Charming future of SHINE

Aleksandra Snoch for NA61/SHINE Goethe University

> Tsukuba Workshop 11/12/2017

- Why open charm is important?
- First measurements in NA61/SHINE 2017-2018
- Precise open charm studies in 2021-2024

Why open charm is important?

Questions that motivate open charm measurements at the CERN SPS:

- What is the mechanism of open charm production?
- How does the onset of deconfinement impact open charm production?
- How does the formation of quark gluon plasma impact J/ψ production?

To answer these questions mean number of charm quark pairs, $\langle c\bar{c} \rangle$, produced in the full phase space in A+A collisions has to be known. Up to now corresponding experimental data does not exist.

Models of open charm production

Predictions for $\langle c\overline{c} \rangle$ in central Pb+Pb at 158A GeV/c differ by a factor of about 50.

Charm yield as the signal of deconfinement

 $\begin{array}{rcl} \text{confined matter} & \xrightarrow{T_c \approx 150 \text{MeV}} & \text{deconfined matter} \\ & & & D\overline{\text{D}} \text{ mesons} & \rightarrow & \text{charm quarks} \\ & & & 2m_{\text{D}} = 3.7 \text{ GeV} & \rightarrow & 2m_{\text{c}} = 2.6 \text{ GeV} \\ & & & & g_{\text{D}} = 4 & \rightarrow & g_{\text{c}} = 12 \end{array}$

J/ψ production as the signal of deconfinement

$$P(c\overline{c} \to J/\psi) \equiv \frac{\langle J/\psi \rangle}{\langle c\overline{c} \rangle} \equiv \frac{\sigma_{J/\psi}}{\sigma_{c\overline{c}}}$$

 $P_{\text{vacuum}}(c\overline{c} \rightarrow J/\psi) > P_{\text{medium}}(c\overline{c} \rightarrow J/\psi)$

Medium reduces probability of J/ψ production

J/ψ production as the signal of deconfinement

Calculation of $P(c\overline{c} \rightarrow J/\psi)$ requires data on:

Mass (GeV/c^2)

3

$$P(c\overline{c} \to J/\psi) \equiv \frac{\langle J/\psi \rangle}{\langle c\overline{c} \rangle} \equiv \frac{\sigma_{J/\psi}}{\sigma_{c\overline{c}}}$$

 $\langle c\overline{c} \rangle$ – not available up to now, NA61 has just started the corresponding measurements

1.8

2

2.2

2.4

M_{Kπ} [GeV/c²]

Data on J/ψ production has been normalized by the Drell-Yan yield

 $\langle c\bar{c}\rangle \sim \langle \mathrm{DY}\rangle$

This assumptions may be incorrect due to many effects: shadowing, parton energy losses, etc.

First measurements in NA61/SHINE 2017-2018

Open charm measurement concept

Vertex detector is needed to reconstruct primary vertex and secondary vertexes with high precision.

NA61/SHINE setup

Small Acceptance Vertex Detector

Small Acceptance Vertex Detector introduced in 2016:

- 16 CMOS MIMOSA-26 sensors located on two horizontally movable arms
- target holder integrated

Achieved goals:

- tracking in the large track multiplicity environment
- precise primary vertex reconstruction
- TPC and SAVD track matching
- first search for D^0 and $\overline{D^0}$ signal

Acceptance of SAVD

AMPT simulation for central Pb+Pb collisions at 150A GeV/c. SAVD reconstructs 4% out of all $D^0 \rightarrow \pi^+ + K^-$ decays

Vertex Detector performance from 2016 data

From the analysis of the recorded data one concludes that:

- Cluster position resolution is $\sigma_{x,y}(Cl) \approx 5 \ \mu m$
- Primary Vertex resolution is:

 $\sigma_{\rm x}(PV) \approx 5 \ \mu {\rm m}_{,}$ $\sigma_{\rm y}(PV) \approx 1.8 \ \mu {\rm m}_{,}$

 $\sigma_{\rm z}(PV)\approx 30~\mu{\rm m}. \label{eq:sigma_scalar}$ $(\sigma_{\rm x}(PV)>\sigma_{\rm y}(PV)~{\rm due~to}~B_{\rm y}>B_{\rm x}\approx 0)$

Search for D^0 and $\overline{D^0}$

First indication of D^0 and $\overline{D^0}$ peak

About 5M events on central Xe+La collisions at 150A GeV/c were recorded at the beginning of November.

Based on simulations from Pb+Pb and p-QCD inspired system size dependence, one expects several hundred of $D^0 + \overline{D^0}$ meson decays to be reconstructed.

This should allow to obtain the first physics results on open charm production in heavy ion collisions at the CERN SPS.

Impact of Xe+La data

 J/ψ production in In+In (A = 115) collisions at 158A GeV/c was precisely measured by NA60.

This data together with NA61 results on open charm production in Xe+La (A = 129, A = 139) collisions at 150A GeV/cwill strongly challenge theoretical models.

Pilot data on Pb+Pb at 150A GeV/c in 2018

Data taking in 2018 on central Pb+Pb collisions for open charm measurement recommended by CERN SPSC in October 2017.

Three weeks of data taking:

- 10M central collisions recorded
- 4000 D^0 and $\overline{D^0}$ decays is expected to be reconstructed

Precise open charm studies in 2021-2024

Upgrades of NA61/SHINE setup

Large Acceptance Vertex Detector

General requirements:

- Precise vertex measurement
- Fast detectors with high granularity
- The low material budget
- Large acceptance

Technology developed for ALICE ITS:

- CMOS ALPIDE pixel sensors
- Carbon fiber support structure
- Read-out electronics

6 stations with about 200 sensors

Year	Beam	Duration	Purpose	$D^0 + \overline{D^0}$ stat.
2021	p at 150 GeV/c	4 weeks	detector tests	
2022	Pb at 150A GeV/c	2 weeks	charm in central collisions	40k
2022	Pb at 150A GeV/c	4 weeks	charm in peripheral collisions	8k
2023	Pb at 150A GeV/c	2 weeks	charm in mid-central collisions	20k
2024	Pb at 40A GeV/c	4 weeks	charm in central collisions	2k

Performance for open charm measurements

Two weeks in 2022 (1kHz + LAVD) $\approx 40\ 000\ D^0 + \overline{D^0}$ decays reconstructed in 40M central Pb+Pb collisions at 150A GeV/c

LAVD reconstructs 12% out of all $D^0 \rightarrow \pi^+ + K^-$ decays.

Based on AMPT one estimates that fully corrected results will cover most of the phase space.

Total systematic uncertainty of $\langle D^0 \rangle$ and $\langle \overline{D^0} \rangle$ is expected to be about 10%.

Uniqueness of NA61 open charm program

Landscape of present and future heavy ion experiments

Only NA61/SHINE is able to measure open charm production in heavy ion collisions in full phase space in the near future.

- LHC and RHIC at high energies: measurements in small phase space due to collider geometry and kinematics
- RHIC BES collider: measurement not possible due to collider geometry and kinematics
- RHIC BES fixed-target: measurement require dedicated setup, not under consideration
- NICA (< 80A GeV/c): measurement during stage 2 under consideration
- J-PARC (< 20*A* GeV/*c*): maybe possible after 2025
- FAIR (< 10A GeV/c): not possible

Impact of open charm measurements

assuming HSD yield

Impact of open charm measurements

accuracy of NA61 2020+ result assuming SMES yield

Impact of open charm measurements

NA61 charm program addresses following questions:

- What is the mechanism of open charm and J/ψ production?
- How does the onset of deconfinement impact open charm production?
- How does the formation of quark gluon plasma impact J/ψ production?

To answer these questions mean number of charm quark pairs produced in heavy ion collisions will be measured in 2017-2018 and in 2021-2024.

Only NA61/SHINE can perform this measurement in the near future.

Backup slides

Replacement of the TPC electronics

Will increase the read-out rate by a factor of about 10 (up to 1 kHz) ALICE will transfer to NA61/SHINE its present TPC electronics that will be replaced during the long shutdown LS2

Present NA61 Front-End Card

ALICE Front-End Card

ALICE Front-End Card on NA61 TPC

Upgrade of the trigger and data acquisition

Need for 1kHz readout frequency

Search for D^0 and $\overline{D^0}$

Huge combinatorial background is suppressed by cuts on:

- track transverse momentum
- track impact parameter
- longitudinal distance between secondary and primary vertices
- pair impact parameter

LHC open charm and J/ψ

LAVD acceptance

HSD predictions

VD – TPC track matching

Extrapolate SAVD tracks to TPC volume.

Pre-selection: cut on y-slopes of tracks.

After cuts on dx and dy clear correlation peaks are seen in dpx and dpz

Matching with TPC provides: momenta and PID to VD tracks \rightarrow invariant mass distribution

