南極天文学研究部門 活動報告

久野成夫

<u>南極天文学研究部門</u>

- 1. 高精度望遠鏡を南極高原地帯に設置し、暗黒 銀河等を探索し、南極天文学を推進
- 2. 鹿島34m鏡、野辺山45m鏡、アルマ等の望遠鏡 を用いた、銀河、銀河系、宇宙構造等の観測的 研究
- 3. 宇宙・銀河等の構造と進化の理論的研究

南極内陸部は地上唯一の観測場所

1. 南極テラヘルツ望遠鏡計画

- ・10mテラヘルツ望遠鏡に向けた技術開発
 - ・超伝導電波カメラの開発 ⇒ 新田さん講演
 - ・45m電波望遠鏡用109素子MKIDカメラの開発 (Mandal D2、 村山、翟 D1)
 - ヘテロダイン受信機の開発
 - ・30cm望遠鏡用500GHz受信機の広帯域化
 - ・鏡面測定法の開発
 - リッチー・クレチアン光学系での近傍界Phase Retrieval Holography (周 D2)

(佐藤 M2)

・点回折干渉計による波面測定 (奥村 D2)

可搬式南極30cmサブミリ波望遠鏡

<u>可搬式南極30cmサブミリ波望遠鏡</u>

_____By 佐藤(M2)(瀬田:関学) <u>*co,ci同時観測の意義</u>

南極用のプロトタイプとして開発が進められてきた30cm可搬型サブミリ波望遠鏡 は、星形成の母体となる分子雲中のCO(J=4-3)(461GHz)ならびにCI[³P₁-³P₀] (492GHz)の銀河面サーベイを目的としている。これらの2輝線は、大気透過率の 時間変動や周波数依存性が大きいサブミリ波に存在している。CO、CIを同時観 測することによって、観測効率の向上、安定したデータ取得のみならず、銀河面 サーベイ時におけるアンテナのポインティング精度が高まり、より正確な輝線強 度比を求めることができる。

<u>冷凍受信機とブロックダイアグラム</u>

ダブルサイドバンド(DBS)での受信はシン グルサイドバンド(SSB)に比べてイメージバ ンドからの大気雑音が余分に含まれる。大 気透過率の時間変動が大きいサブミリ波 において、この大気雑音の増加及び時間 変動は正確な輝線強度を求める際の妨げ となる。

したがって、本受信機は目的の輝線を同時、 かつ、それぞれSSBでの受信が可能な<mark>2SB</mark> 受信方式を採用している。

以前のIFの増幅帯域

現在のIFの増幅帯域

ヘテロダイン受信機では、中間周波数帯域(IF)の広帯域化は重要な開発要素である。 以前の2SB受信機は、IFの増幅帯域がUSB,LSB共に4-8GHzであったため、観測する輝線に合わせてLocal周波数を変化 させて測定を行なっており、CO、CIの同時観測は不可能であった。近年、帯域がより高周波かつ広帯域で使用可能なIF ハイブリット、サーキュレーター、低雑音増幅器(LNA)が入手可能になったことで、周波数を固定したままで2つの輝線を それぞれUSB,LSBの増幅帯域に入れることが可能となった。

1. 南極テラヘルツ望遠鏡計画

- ・10mテラヘルツ望遠鏡に向けた技術開発
 - ・超伝導電波カメラの開発 ⇒ 新田さん講演
 - ・45m電波望遠鏡用109素子MKIDカメラの開発 (Mandal D2、村山、翟D1)
 - ヘテロダイン受信機の開発
 - ・30cm望遠鏡用500GHz受信機の広帯域化
 - (佐藤 M2)

- ・鏡面測定法の開発
 - リッチー・クレチアン光学系での近傍界Phase Retrieval Holography (周 D2)
 - ・点回折干渉計による波面測定 (奥村 D2)

By 周(D2) (西堀:JAXA)

10-m RC telescope & Near-field PRH holography

10-m RC telescope & Near-field PRH holography

*Near-field phase retrieval holography:

- -Relative low accuracy but convenient
- Saving cost: no additional reference antenna
- High signal to noise ratio:>80dB

- Few researches on such field: significant & helpful for future measurements

*Near-field PRH principle:

-In near field incident wave from radio source(transmitter) \rightarrow spherical wave

- RC telescope is special \rightarrow more complex pathlength

- Move sub-reflector in different positions
- \rightarrow different defocus near-field pattern
- Deriving aperture field by beam pattern: Misellalgorithm (defocus beam pattern & phase shift)
- Add phase correction value into final result
- Estimate the primary surface's accuracy

電波点回折干涉計(RPDI)

電波点回折干涉計(RPDI)

物理光学手法によるシミュレーション

RPDIは南極テラヘルツ電波望遠鏡の波面測定法として実装し、鏡面形状を推定できる可能性がある

2. 既存の望遠鏡による観測的研究

- ALMA
 - ・棒渦巻銀河のパターン速度(田中D2、久野)

• 鹿島34m鏡(齋藤他)

- •野辺山45m鏡
 - CO輝線による銀河面サーベイ
 - (久野、齋藤、院生)
 - CO輝線による近傍銀河サーベイ

(久野、渡邉、院生)

情報通信研究機構 鹿島宇宙技術センター34m鏡

- 筑波大学-NICT:共同研究契約を締結
- 大学連携VLBI観測(クェーサー、銀河 系中心BH)
- ・単一鏡としてアンモニア、水メーザーによる星形成領域・銀河の観測

Kashima

- 34m鏡能率測定
- ホログラフィーによる鏡面測定

2. 既存の望遠鏡による観測的研究

- ALMA
 - ・棒渦巻銀河のパターン速度(田中D2、久野)
- •鹿島34m鏡(齋藤他)
- ・野辺山45m鏡
 ・CO輝線による銀河面サーベイ (久野、齋藤、院生)
 ・CO輝線による近傍銀河サーベイ (久野、渡邉、院生)

- ・野辺山宇宙電波観測所レガシープロジェクト
 - 45m電波望遠鏡+マルチビーム受信機FOREST
 - 観測時間およそ1000時間/1プロジェクト

(2014年-2017年)

- ・国立天文台と大学の連携 (筑波大学は中心メンバー)
- FOREST Unbiased Galactic plan imaging survey with Nobeyama 45-m telescope (FUGIN)
 - ・一酸化炭素3輝線による銀河面サーベイ
- CO Multi-line Imaging of Nearby Galaxies (COMING)
 - ・近傍銀河の一酸化炭素3輝線による撮像サーベイ

FOREST Unbiased Galactic plan imaging survey with Nobeyama 45-m telescope (FUGIN)

- 観測範囲: 2° × 40°
- CO 3輝線 ¹²CO(J=1-0) >~10² cm⁻³ ¹³CO(J=1-0) >~10³ cm⁻³ C¹⁸O(J=1-0) >~10⁴ cm⁻³

FUGIN

FOREST Unbiased Galactic plane Imaging survey with Nobeyama 45-m telescope

・これまでにない空間ダイナミックレンジ ・銀河系構造(数万光年)~巨大分子雲~高密度クランプ(<1光年) ・異なる密度領域をカバー

・分子雲衝突による大質量星形
 ・分子雲の詳細な内部構造^{™™}
 ・フィラメント状構造→星形成

Red ¹⁴CO(1-0) Green ... ¹⁵CO(1-0) Blue C¹⁸O(1-0)

MO MA ANDIEVAMA FOREST

Credit: NAOJ/NASA/JPL-Caltech

巨大分子雲W51(藤田D論2017)

- •W51内部の詳細構造
 - ・内部分子雲同士の衝突 ⇒大質量星形成のトリガ-
 - ・超新星爆発による
 分子ガスの加速
 ⇒新たな衝突へ

超新星残骸Kes79 (栗木修論2017)

- ・超新星残骸Kes79に付随す
 る分子雲の同定
- Kes79の運動学的距離の決
 定
- ・ガンマ線光度(宇宙線と星 間陽子から)とガス密度
- ⇒Kes79からの宇宙線陽子全 エネルギーを推定
- ⇒超新星による宇宙線陽子 の加速効率

14		2				\$	8	1º a	•	· 🏟			٠.	19	ø
		*		A.e.		1.00				17					
			\bigcap					(-							•
•											- 4	$\mathcal{M}^{(i)}$			•
1	C	0 1	/lult	i-lin	e In	nag	jing	of	Nea	arby	/ Ga	alax	ies		
1	•ì	丘仔	争銀	河	14	6们	古	世界	界最	大	<i></i> ກ-	サー	-~	1	-
•	•(CO	3揽	鄆線											•
*		12	CO((J=1	1-0)	>-	-10	² cn	n ⁻³						
14.1		13	CO((J=1	1-0)	>~	~10	³ cn	n ⁻³						/
-		C	8 <mark>0</mark> ((J=1	1-0)	>~	-10	⁴ cn	n ⁻³	.		-	•	\$	
Û		-		4		1	1	34	1	٥	ę	\$	•	185	•••
٩	•	Į.	1	*	7 -	-	-	•	٠	1		-			
															ISE

<u>COMING</u>

- •147個の銀河(世界最大の撮像サーベイ)
- ・銀河の種類による分子
 ガスの分布・運動の違
 い
- ・銀河の構造と分子ガスの物理状態、星形成活動との関係

⇒銀河進化との関係

Case study (1) NGC 2903

- Muraoka et al. (2016), PASJ, 68, 89
- a barred spiral galaxy

Molecular gas and SFE

- relation n(H₂) (not Σ(H₂)) and SFE in disk
- molecular gas density governs the spatial variations in SFE

南極天文学研究部門

- 南極天文学の推進
 - •野辺山45m電波望遠鏡鏡超伝導電波カメラの開発
 - ヘテロダイン受信機の広帯域化
 - 鏡面測定法の検討(点格子干渉計、PRH法)
 - 30m級テラヘルツ望遠鏡のサイエンス検討
 - 10m級テラヘルツ望遠鏡のフィジビリティースタディ、 低コスト化の検討
 - 南極での運用、国際連携にむけた体制の検討
- •既存の観測装置による観測的研究
 - 野辺山45m鏡レガシープロジェクト
 - CO分子輝線による銀河面サーベイ (FUGIN)
 - CO分子輝線による近傍銀河サーベイ (COMING)
 - 鹿島34mアンテナ
 - 大学連携VLBI
 - 性能測定
 - ALMAによる銀河観測