

Latest results on the H(125) from the LHC

宇宙史研究センター構成員会議・成果報告会, June 4, 2018

Hideki Okawa

University of Tsukuba, Division of Physics & Tomonaga Center for the History of the Universe

LHC Run 1

- Historical achievements at LHC Run 1:
 - Discovery of a Higgs boson
 - Direct observation of $\gamma\gamma$, ZZ, W+W-, τ + τ -
 - Confirmation of Spin/CP properties
 - Precise measurement of its mass

- Yet still missing items:
 - Observation of the largest decay mode (bb)
 - Direct observation of Top Yukawa coupling
 - Rare decays from new physics?
 - Higgs self-coupling (challenging at LHC)

H. Okawa

LHC Run 2

Run 2 (√s = 13 TeV)	Deliv. Lumi.	Peak Lumi. [cm ⁻² s ⁻¹]
2018 (as of May 17)	10.4 fb ⁻¹	2.14×10 ³⁴
2017	50.2 fb ⁻¹	2.09×10 ³⁴
2016	38.5 fb ⁻¹	1.38×10 ³⁴
2015	4.2 fb ⁻¹	0.50×10 ³⁴

- Delivered more than 100 fb⁻¹ in Run 2 already. Successful operation of LHC & ATLAS/CMS.
 - Peak luminosity = 2.14×10³⁴ cm⁻²s⁻¹ in 2018 (twice the design luminosity), more challenging with pileup
- Results presented here are with 2015+2016 datasets $(\sqrt{s} = 13 \text{ TeV}, 36 \text{ fb}^{-1}).$

H. Okawa

H. Okawa

0.2%

bb

57.5%

CC

2.9%

ττ

6.3%

gg

8.6%

WW

21.6%

Higgs Decays

- γγ, ZZ(→4ℓ): Discovery channels. Small branching ratios (BRs), but good mass resolution & clean signatures.
 W+W-(→I+vI-v̄): Large BR, good sensitivity to
 - W+W-(\rightarrow I+vI- \bar{v}): Large BR, good sensitivity to ggF & VBF, but poor mass resolution due to two neutrinos.
 - bb: Has the largest BR, but suffers from large BG. The last major channel to be observed.
 - τ⁺τ⁻: Reasonable mass resolution, good sensitivity
 to ggF & VBF prod. <u>Best sensitivity to Higgs-</u>

 <u>fermion coupling</u>.
 - gg: Can only be measured at ILC.
 - cc: Can only be measured at ILC.
 - Zγ, μ+μ-: Very low BRs. Progressing toward the observation of μ+μ-. Zγ should be visible at HL-LHC.

Higgs-boson Couplings

- Higgs boson was discovered by the "Golden" boson-decay channels: $\gamma\gamma$, ZZ*($\rightarrow 4\ell$) at LHC Run 1. LHC Run 2 is the dawn of the Higgs precision measurements.
- The two channels are combined to measure the cross section & mass, as well as the signal strengths of various production modes.

H. Okawa

• VBF cross section is slightly above the SM prediction.

H. Okawa

宇宙史研究センター構成員会議・成果な

 $\sigma_{ggF} [pb]$

ATLAS-CONF-2018-002

- Kinematic distributions (Higgs p_T, y, number of jets & jet p_T) are important probes to check the validity of the perturbative QCD and to understand/ improve the Monte Carlo generators.
- Higgs p_T & p_T of jets are also sensitive to physics beyond the Standard Model & are important to measure them precisely.

H. Okawa

- Similar precision (~0.2%) as the Run-1 (ATLAS+CMS) measurement with the ATLAS-only Run-2 $\gamma\gamma$ +4 ℓ combined or CMS-only 4 ℓ .
- $\gamma\gamma \& ZZ^*(\rightarrow 4\ell)$ channels are currently compatible in precision.
- $ZZ^*(\rightarrow 4\ell)$ channel is still dominated by the statistical uncertainties.
- γγ channel needs to cope with the systematic uncertainties (electromagnetic calorimeter response & materials from the inner detectors) to further reduce the uncertainties.

H. Okawa

 $H \rightarrow WW(^*) \rightarrow \ell \nu \ell \nu$

- Large signal statistics available but challenging to cope with the large BG. Access to all the production modes.
- ATLAS analyzed the $e\nu\mu\nu$ channel, whereas CMS considered both the different/same lepton flavor channels as well as multilepton channels for WH & ZH production modes.
- Signal strengths compatible with the SM.
- Both ATLAS & CMS observe $H \rightarrow WW^{(*)}$ with > 5 σ : 9.1 σ (6.3 σ) for the observed after combining all (ggF+VBF) channels in CMS (ATLAS).

H. Okawa

 \bar{q}

H(bb) Evidence

- H(→bb̄) has the largest branching fraction (58%), but is difficult to observe due to the large BG.
- WH, ZH production modes have the highest sensitivity.
- Considered m_{bb} & various kinematic distributions as inputs to multivariate analyses (boosted decision tree; BDT).
 - Dedicated b-jet calibration to improve m_{bb} resolution.
 - H = Grouped into the second second
 - Grouped into various categories by the numbers of leptons (& jets for ATLAS) & W/Z p_T .

H. Okawa

q

0 lepton: $Z(\rightarrow \nu\nu)H(\rightarrow bb)$

1 lepton: $W(\rightarrow \ell \nu)H(\rightarrow b\overline{b})$

2 leptons: $Z(\rightarrow \ell \ell)H(\rightarrow b\bar{b})$

H(bb) Evidence

- Evidence of H(bb) by both experiments!
 - ATLAS: 3.6 σ (4.0 σ) [Run 1+2] for observed (expected)
 - CMS: 3.8 σ (3.8 σ) [Run 1+2] for observed (expected)
- Consistent results with the cut-based analysis in ATLAS (performed as a cross-check).

H. Okawa

t**TH Measurements**

13

- The ttH production allows us to directly measure the H-top Yukawa coupling.
- The following channels are considered in ATLAS & CMS:
 - $ttH(\rightarrow b\bar{b})$: with 1, 2 leptons (also all had. for CMS)
 - **ttH** \rightarrow **multilepton+X:** 2 same-sign, 3, 4 leptons w/ or w/o τ_{had} .
 - **ttH(\rightarrow \gamma \gamma)**: several categories with 0/1-lepton & jets/b-jets.

t**TTHObservation**

- Both ATLAS & CMS see evidence of ttH production with Run 2 data.
 With Run 1+2 combination by CMS, the production is fully observed:
 - ATLAS Run 2 : 4.2 σ observed (3.8 σ expected)
 - CMS Run 1+2 : 5.2 σ observed (4.2 σ expected).
- Signal strength of μ_{ttH} =2 is now excluded at 95% CL by both ATLAS and CMS.

宇宙史研究センター構成員会議・成果報告会,

- With Run 1 & 2017 data (for $\gamma\gamma \& ZZ^{(*)} \rightarrow 4\ell$) added, ATLAS also observes the ttH production:
 - **6.3** σ observed (5.1 σ expected)
- Signal strength/cross section consistent with the Standard Model prediction.

ATLAS

ttH (bb)

ttH (γγ)

tīH (ZZ)

_1

Combined

Will mention in the

next slides

- $\Gamma_{\rm H} < 3 \Gamma_{\rm H}^{\rm SM}$ still allows for sizable contributions from BSM decays.
- Searches for rare Higgs decays is a probe for new physics, i.e. in enhancement of expected decays or in new decay modes (invisible, LFV, new bosons, etc.).
- Rare decays searched at the LHC:
 - Loop diagram: $H \rightarrow Z\gamma$
 - 1st generation couplings: $H \rightarrow \rho \gamma$, $H \rightarrow ee$
 - 2nd generation couplings: $H \rightarrow \phi \gamma$, $H \rightarrow J/\psi \gamma$, $H \rightarrow \gamma \gamma$, $H \rightarrow cc$, $H \rightarrow \mu \mu$
 - LFV: $H \rightarrow e\tau, \mu\tau, e\mu$; ($t \rightarrow qH$)
 - New particles: $H \rightarrow invisible$, $H \rightarrow aa$ (a: new (pseudo)scalar), $H \rightarrow ZZ_d, Z_dZ_d \rightarrow 4\ell$ (Z_d: new vector boson), $H \rightarrow f_{d2}f_{d2} \rightarrow lepton-jets + X$ (f_{d2}: hidden fermion)

H. Okawa

H(μ+μ-)

• BR($H \rightarrow \mu^+\mu^-$)=2.2×10⁻⁴ from SM. Best sensitivity to the 2nd generation Yukawa couplings.

- BDT is considered with various muon & jet kinematic variables uncorrelated to $m_{\mu\mu}$. The events are categorized based on the BDT scores & $m_{\mu\mu}$ resolution (i.e. muon directions).
- BR(H→μ+μ-)/BR_{SM}(H→μ+μ-) < 2.8 obs (2.9 exp) for ATLAS & 2.64 obs (1.89 exp) for CMS @95% CL with Run 1+Run 2 combined dataset.
- Best fit signal strength: -0.1±1.4 (ATLAS), 0.9^{+1.0}-0.9 (CMS). Uncertainty is statistically dominated.

H. Okawa

- BR(H→cc̄)=2.9% from SM. Charm coupling was previously searched with J/ψ γ channel in Run 1.
- An approach to search for the coupling with c-tagging has been newly considered by ATLAS in Run 2.
- $\sigma_{ZH} \times BR(H \rightarrow c\bar{c}) < 2.7 (3.9) \text{ [pb]}; 110 (150) \text{ times the SM expectation for obs. (exp.)@95% CL.}$

H. Okawa

Invisible Higgs Decay

- Invisible decays of the Higgs boson are expected from various BSM models, especially in relation to the dark matter. Searches are pursued with a Higgs recoiling against visible particles.
- For all the channels, the expected sensitivity has surpassed that of Run 1.
- CMS Combination provides BR($H \rightarrow inv$) < 24% [obs], 18% [exp]@95% CL.

H. Okawa

Combination

<u>CMS-PAS-HIG-17-031</u>

- Visible improvement in sensitivity for ggH & ttH.
- Precision from first 36 fb⁻¹ from a single experiment matches Run 1 ATLAS+CMS for various couplings.

H. Okawa

Combination - STXS

- Simplified template cross sections (STXS) aimed to balance experimental precision & theory uncertainties. Less model independent than Run 1 approach.
 - Very simple fiducial regions for each production mode & common between ATLAS, CMS, and theory.

Di-Higgs

Destructive Interference

- Di-Higgs production searches are pursued at the LHC, mostly in the context of new resonance searches.
- Best constraint on $\sigma_{HH}/\sigma_{HH}^{SM}$ (<13) at 95% CL from $HH \rightarrow 4b$ (arXiv:1804.06174).
- Best constraint on self-coupling from $HH \rightarrow bb\gamma\gamma$ channel: -8.82 < κ_{λ} < 15.04 at 95% CL.

		CMS Preliminary	C <u>MS-PAS-HIG-17-008</u> 35.9 fb ⁻¹ (13 TeV)	
	95% CL limits on o	́нн/ σ нн SM [obs (exp)]	Ω	$c_{g} = c_{2g} = c_{2} = 0$
Channels	ATLAS CMS		C 10 Observed 95% C	C.L. limit
4b	< 13 (21)	< 342 (308)	12 Expected $\pm 1\sigma$ Expected $\pm 2\sigma$	
bbWW	—	< 79 (89)	H 10 Theory Predictio	n ($\kappa_t = 1$) n ($\kappa_t = 2$)
bbττ	< 160 (130) [Run1]	< 30 (25)	dd) 8	
bbγγ	< 117 (161)	< 19 (17)	4	
γγ₩₩	< 747 (386)	—	2	
	Run-2: 3 fb ⁻¹ ,	13 fb ⁻¹ , 36 fb ⁻¹	0 <u><u> </u></u>	-5 0 5 10 15 20 $\kappa_{\lambda}/\kappa_{t}$

Summary

- Discovery of a Higgs boson is a dawn of a new era, where a totally rich program has opened up to be investigated and to be understood.
- Many achievements in Run 2 beyond the Higgs discovery:
 - More details & improved precision in cross section & coupling measurements
 - Single-experiment observation of $H \rightarrow \tau^+ \tau^-$.
 - Evidence of H→bb
 - Observation of ttH production
 - Uncertainty on the signal strength of $H \rightarrow \mu^+\mu^-$ is reaching 100%
 - More stringent constraints on various BSM phenomena.
- More to come with the full Run 2 data to be taken until the end of this year.
- Run 3 & HL-LHC will provide various measurements of the Higgs boson w/ even higher precision & sensitivity to various rare processes (both SM & BSM).

backup

$H \rightarrow \gamma \gamma \& 4\ell$ Differential

$H \rightarrow \gamma \gamma \& 4\ell$ Differential

Combination

Run 2 (CMS)

 $^{+0.10}_{\substack{-0.17\\(+0.10\\-0.10})}$

 $1.07 \begin{array}{c} +0.15 \\ -0.18 \\ (+0.12 \\ -0.12 \end{array})$

 $^{+0.11}_{\substack{-0.07\\ (+0.07\\ -0.07)}}$

 κ_{γ}

					$BR_{inv.} = 0$			
	- F	Run 1 (ATLAS+C			Uncertainty			
					Parameter	Best fit	Stat.	Syst.
Parameter	ATLAS+CMS Measured	ATLAS+CMS Expected uncertainty	ATLAS Measured	CMS Measured	κ _Z	$\begin{array}{c} 0.99 \begin{array}{c} +0.11 \\ -0.11 \\ (+0.11 \\ -0.11 \end{array}) \end{array}$	$^{+0.09}_{-0.09} \\ (^{+0.09}_{-0.09})$	$^{+0.06}_{-0.06} (^{+0.06}_{-0.06})$
κΖ	$ \begin{array}{c} 1.00\\ [-1.05, -0.86] \cup\\ [0.90, 1.11] \end{array} $	[−1.00, −0.88]∪ [0.90, 1.10]	$0.98 \\ [-1.07, -0.83] \cup \\ [0.84, 1.12]$	$ \begin{array}{c} 1.03\\ [-1.11, -0.83] \cup\\ [0.87, 1.19] \end{array} $	$\kappa_{ m W}$	$1.12 \begin{array}{c} +0.13 \\ -0.19 \\ (+0.12 \\ -0.12 \end{array})$	$^{+0.10}_{-0.18} \\ (^{+0.09}_{-0.09})$	$^{+0.08}_{-0.07} (^{+0.07}_{-0.07})$
κ_W κ_t	$\begin{array}{c} 0.91\substack{+0.10\\-0.12}\\ 0.87\substack{+0.15\\-0.15}\end{array}$	$+0.10 \\ -0.11 \\ +0.15 \\ -0.18$	$\begin{array}{c} 0.91\substack{+0.12\\-0.15}\\ 0.98\substack{+0.21\\-0.20}\end{array}$	$\begin{array}{c} 0.92\substack{+0.14\\-0.17}\\ 0.77\substack{+0.20\\-0.18}\end{array}$	κ _t	$1.09 \begin{array}{c} +0.14 \\ -0.14 \\ (\begin{array}{c} +0.14 \\ -0.15 \end{array}) \end{array}$	$^{+0.08}_{-0.08} \\ (^{+0.08}_{-0.09})$	$^{+0.12}_{-0.12} \\ (^{+0.12}_{-0.12})$
$ \kappa_{ au} $ κ_b	$\begin{array}{c} 0.90\substack{+0.14\\-0.16}\\ 0.67\end{array}$	$^{+0.15}_{-0.14}$	$\begin{array}{c} 0.99\substack{+0.20\\-0.20}\\ 0.64\end{array}$	$\begin{array}{c} 0.83\substack{+0.20\\-0.21}\\ 0.71\end{array}$	$\kappa_{ au}$	$1.01 \begin{array}{c} +0.17 \\ -0.18 \\ (\substack{+0.16 \\ -0.15}) \end{array}$	$^{+0.11}_{\begin{array}{c}-0.15\\ (+0.11\\ -0.11\end{array})}$	$^{+0.12}_{-0.09} \\ (^{+0.11}_{-0.11})$
K ₁₁	$ \begin{bmatrix} -0.73, -0.47 \end{bmatrix} \cup \\ \begin{bmatrix} 0.40, 0.89 \end{bmatrix} \\ 0.2^{+1.2} \end{bmatrix} $	$egin{array}{c} [-1.24,-0.76] \cup \ [0.74,1.24] \ +0.9 \end{array}$	$ \begin{bmatrix} -0.89, -0.33 \end{bmatrix} \cup \\ \begin{bmatrix} 0.30, 0.94 \end{bmatrix} \\ 0.0^{+1.4} \end{bmatrix} $	$[-0.91, -0.40] \cup \\ [0.35, 1.04] \\ 0.5^{+1.4}$	κ _b	$1.10 \begin{array}{c} +0.27 \\ -0.33 \\ (+0.25 \\ -0.23 \end{array})$	$^{+0.19}_{-0.30} \\ (^{+0.19}_{-0.17})$	$^{+0.19}_{\begin{array}{c}-0.14\\ (+0.17\\ -0.15\end{array})}$
<u> '''μ</u>		1			κ _g	$1.14 \begin{array}{c} +0.15 \\ -0.13 \\ \left(\begin{array}{c} +0.14 \\ -0.12 \end{array} \right)$	$^{+0.10}_{-0.09} \\ (^{+0.10}_{-0.09})$	$^{+0.11}_{-0.09} \\ (^{+0.10}_{-0.09})$

H. Okawa

Run 1 (ATLAS+CMS)

Combination

ATLAS+CMS	ATLAS	CMS		Decay channel	ATLAS+CMS	ATLAS	CMS
$\frac{1.03^{+0.16}_{-0.14}}{(+0.16)}$	$1.26^{+0.23}_{-0.20}$ (+0.21)	$0.84^{+0.18}_{-0.16}$		$\mu^{\gamma\gamma}$	$\begin{array}{c} 1.14 {}^{+0.19}_{-0.18} \\ \left({}^{+0.18}_{-0.17} \right) \end{array}$	$1.14 \substack{+0.27 \\ -0.25} \\ \begin{pmatrix}+0.26 \\ -0.24\end{pmatrix}$	$ \begin{array}{c c} 1.11 \begin{array}{c} +0.25 \\ -0.23 \\ \left(\begin{array}{c} +0.23 \\ -0.21 \end{array} \right) \end{array} $
(-0.14) 1.18 $^{+0.25}_{-0.23}$	(-0.18) 1.21 $^{+0.33}_{-0.30}$	(-0.17) $1.14^{+0.37}_{-0.34}$		μ^{ZZ}	$1.29^{+0.26}_{-0.23} \\ \begin{pmatrix} +0.23 \\ -0.20 \end{pmatrix}$	$1.52^{+0.40}_{-0.34}\\ \left(\begin{smallmatrix}+0.32\\-0.27\end{smallmatrix}\right)$	$1.04 \substack{+0.32 \\ -0.26} \\ \begin{pmatrix}+0.30 \\ -0.25\end{pmatrix}$
$\begin{pmatrix} +0.24 \\ -0.23 \end{pmatrix}$ $0.89 \stackrel{+0.40}{-0.38}$	$\begin{pmatrix} +0.32 \\ -0.29 \end{pmatrix}$ $1.25 \stackrel{+0.56}{-0.52}$	$\begin{pmatrix} +0.36 \\ -0.34 \end{pmatrix}$ $0.46 \stackrel{+0.57}{_{-0.53}}$		μ^{WW}	$\begin{array}{c}1.09\ {}^{+0.18}_{-0.16}\\ \left({}^{+0.16}_{-0.15}\right)\end{array}$	$1.22 \substack{+0.23 \\ -0.21} \\ \begin{pmatrix}+0.21 \\ -0.20\end{pmatrix}$	$ \begin{array}{c} 0.90 \begin{array}{c} +0.23 \\ -0.21 \\ \left(\begin{array}{c} +0.23 \\ -0.20 \end{array} \right) \end{array} $
$\begin{pmatrix} +0.41\\ -0.39 \end{pmatrix}$	$\begin{pmatrix} +0.56\\ -0.53 \end{pmatrix}$	$\begin{pmatrix} +0.60\\ -0.57 \end{pmatrix}$		$\mu^{\tau\tau}$	$1.11^{+0.24}_{-0.22}$	$1.41^{+0.40}_{-0.36}$	$0.88^{+0.30}_{-0.28}$ (+0.31)
$ \begin{pmatrix} 0.79 \\ -0.36 \\ (+0.39 \\ -0.36 \end{pmatrix} $	$\begin{array}{c} 0.30 \begin{array}{c} +0.51 \\ -0.45 \\ \left(\begin{array}{c} +0.55 \\ -0.51 \end{array} \right) \end{array}$	$ \begin{array}{c} 1.35 {}^{+0.58}_{-0.54} \\ \left({}^{+0.55}_{-0.51} \right) \end{array} $		μ^{bb}	(-0.22) $0.70^{+0.29}_{-0.27}$ (+0.29)	(-0.33) $0.62^{+0.37}_{-0.37}$ (+0.39)	$\left \begin{array}{c} (-0.29)\\ 0.81 \begin{array}{c} +0.45\\ -0.43\\ (+0.45) \end{array}\right $
$2.3^{+0.7}_{-0.6}$ $(^{+0.5}_{-0.5})$	$1.9^{+0.8}_{-0.7}$ $\begin{pmatrix}+0.7\\0.7\end{pmatrix}$	$2.9^{+1.0}_{-0.9}$ $\begin{pmatrix}+0.9\\0.8\end{pmatrix}$		$\mu^{\mu\mu}$	(-0.28) $0.1^{+2.5}_{-2.5}$ (+2.4)	(-0.37) $-0.6^{+3.6}_{-3.6}$ (+3.6)	$\begin{pmatrix} -0.43 \end{pmatrix}$ $0.9^{+3.6}_{-3.5}$ (+3.3)
	$\begin{array}{c} \text{ATLAS+CMS} \\ 1.03 \stackrel{+0.16}{_{-0.14}} \\ \left(\stackrel{+0.16}{_{-0.14}} \right) \\ 1.18 \stackrel{+0.25}{_{-0.23}} \\ \left(\stackrel{+0.24}{_{-0.23}} \right) \\ 0.89 \stackrel{+0.40}{_{-0.38}} \\ \left(\stackrel{+0.41}{_{-0.39}} \right) \\ 0.79 \stackrel{+0.38}{_{-0.36}} \\ \left(\stackrel{+0.39}{_{-0.36}} \right) \\ 2.3 \stackrel{+0.7}{_{-0.6}} \\ \left(\stackrel{+0.5}{_{0.5}} \right) \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Production process														
ggH VBF						WH			ZH		ttH			
Best fit	Uncer	rtainty	Best fit Uncertain		tainty	Best fit	Best fit Uncertainty		Best fit	Best fit Uncertainty		Best fit Unc		tainty
value	Stat.	Syst.	value	Stat.	Syst.	value	Stat.	Syst.	value	Stat.	Syst.	value	Stat.	Syst.
$1.23 \ ^{+0.14}_{-0.13}$	$^{+0.08}_{-0.08}$	$^{+0.12}_{-0.10}$	$0.73 \ {}^{+0.30}_{-0.27}$	$^{+0.24}_{-0.23}$	$^{+0.17}_{-0.15}$	$2.18 \begin{array}{c} +0.58 \\ -0.55 \end{array}$	$^{+0.46}_{-0.45}$	$^{+0.34}_{-0.32}$	$0.87 \ ^{+0.44}_{-0.42}$	$^{+0.39}_{-0.38}$	$^{+0.20}_{-0.18}$	$1.18 \ {}^{+0.31}_{-0.27}$	$^{+0.16}_{-0.16}$	$^{+0.26}_{-0.21}$
$\binom{+0.11}{-0.11}$	$\binom{+0.07}{-0.07}$	$\left(^{+0.09}_{-0.08}\right)$	$(^{+0.29}_{-0.27})$	$(^{+0.24}_{-0.23})$	$\left(^{+0.16}_{-0.15}\right)$	$\binom{+0.53}{-0.51}$	$\binom{+0.43}{-0.42}$	$\binom{+0.30}{-0.29}$	$(^{+0.42}_{-0.40})$	$(^{+0.38}_{-0.37})$	$\binom{+0.19}{-0.17}$	$(^{+0.28}_{-0.25})$	$\binom{+0.16}{-0.16}$	$(^{+0.23}_{-0.20})$

Decay mode																		
H	$H \rightarrow bb$ $H \rightarrow \tau \tau$					$H \rightarrow WW$				$H \rightarrow ZZ$				$H \rightarrow \gamma \gamma$				
Best fit	Uncer	rtainty	Best fit Uncertainty		Best fit Uncertainty			Be	Best fit Uncertainty			Be	st fit	Uncer	tainty			
value	Stat.	Syst.	va va	alue	Stat.	Syst.	va va	alue	Stat.	Syst.		alue	Stat.	Syst.	va va	alue	Stat.	Syst.
$1.12 \ \ {}^{+0.29}_{-0.28}$	$^{+0.19}_{-0.19}$	$^{+0.22}_{-0.20}$	1.02	$^{+0.26}_{-0.24}$	$^{+0.15}_{-0.15}$	$^{+0.21}_{-0.19}$	1.28	$^{+0.17}_{-0.16}$	$^{+0.09}_{-0.09}$	$^{+0.14}_{-0.13}$	1.06	$^{+0.19}_{-0.17}$	$^{+0.16}_{-0.15}$	$^{+0.10}_{-0.08}$	1.20	$^{+0.17}_{-0.14}$	$^{+0.12}_{-0.11}$	$^{+0.12}_{-0.09}$
$\binom{+0.28}{-0.27}$	$(^{+0.19}_{-0.18})$	$\binom{+0.21}{-0.20}$		$\binom{+0.24}{-0.23}$	$\left(^{+0.15}_{-0.14}\right)$	$(^{+0.19}_{-0.17})$		$\binom{+0.14}{-0.13}$	$(^{+0.09}_{-0.09})$	$\binom{+0.11}{-0.10}$		$(^{+0.18}_{-0.16})$	$\left(^{+0.15}_{-0.14}\right)$	$(^{+0.10}_{-0.08})$		$\binom{+0.14}{-0.12}$	$(^{+0.10}_{-0.10})$	$(^{+0.09}_{-0.07})$

H. Okawa

Higgs Decay Width

- The decay width of the Higgs boson is 4.1 MeV. Unable to directly measure at the LHC due to detector resolution ($\Gamma_H < 1.10 \text{ GeV}@95\% \text{ CL} [CMS]$). To be measured at LC.
- However, Higgs off-shell production is sensitive to the Higgs total width & it can be constrained at the LHC using $H^* \rightarrow ZZ \rightarrow 4\ell, \ell\ell\nu\nu$ & $H^* \rightarrow WW \rightarrow \ell\nu\ell\nu$.
- Run 1: <u>**F**H < 22.7 (33.0) MeV [ATLAS], 13 (26) MeV [CMS]</u>@95% CL for obs (exp).
- Constraints will improve with statistics.

$X(\rightarrow ZZ)$

- Visible excess of 3.6σ (global 2.2 σ) at 240 & 700 GeV. Mainly 4e for 240 GeV.
 - 700 GeV is not expected from the 2HDM.
- 700 GeV excess not observed in $\ell \ell \nu \nu$, $\ell \ell qq$ (deficit in the latter..)
- Need improvement on the ZZ BG estimation for 4ℓとℓℓνν (currently fully relying on MC w/ NNLO QCD & NLO EW precision).

H. Okawa

Heavy Higgs Summary

- Exclusions from heavy Higgs searches are summarized in the m_A -tan β plane for hMSSM.
- Significant improvement in Run-2.

H. Okawa

More Generic DM Searches

Mono-H DM Searches

- Higgs-strahlung from initial-state partons is suppressed by the Yukawa coupling.
- Mono-H searches are direct probes for the DM interactions.

