

宇宙史研究センターQGP班 三明康郎

1

√ハドロンの構造;

- ハドロン(陽子、中性子や中間子)は、
 1fm程度の大きさを持ちクォークと媒介粒子グルオンから構成されている。
- ✓大きさを持つハドロンを狭い空間に多重発生させると(高温・ 高密度状態)、ハドロンが連結
 - した状態が起こる?
 - クォーク・グルオンが比較的大きな体 積中を自由に飛び回る状態が実現する

⇒クォーク・グルオンプラズマ状

➡宇宙初期、中性子星内部、、、

高エネルギー原子核・原子核衝突

$$\epsilon_{\text{QGP}} \sim 2 [\text{GeV/fm}^3]$$

$$< n_{q,\bar{q}} > \sim \frac{\epsilon_{\text{QGP}}}{< m_T >} \sim \frac{2 \text{GeV}}{0.4 \text{GeV}} \sim 5$$

$$\lambda_q = \frac{1}{n\sigma_{qq}}$$

$$\sim \frac{1}{5 \times 0.4} = 0.5 \text{ [fm]}$$

$$\lambda_q \ll R_{\text{system}}$$

$$\because \sigma_{qq} \sim \frac{\sigma_{NN}}{3 \times 3} \sim \frac{4 \text{[fm}^2]}{9} \sim 0.4$$

✓クォークレベルの統計力学的性質
 ✓クォークレベルの流体力学的性質
 ⇒QGPの物性を調べるのが目的
 ⇒初期宇宙進化や中性子星構造への影響

三明@宇宙史研究センター

→新物質QGPの 物性、特に相構造を 調べる

米国ブルックヘブン国立研究所(BNL) RHIC加速器(2000-) 全周3.8km √SNN=10-200 GeV Au+Au 欧州共同原子核研究機構(CERN) LHC加速器(2009~) 全周27km世界最大・最高エネルギー √SNN=2.76, 5.5 TeV Pb+Pb

FRANCE

FP

site

Prévessir

三明@宇宙史研究センター

✓QGP生成を疑う研究者は恐らくいない。

QGP物性に関わる 2大トピックス

よくわかっていないけど、

①流体力学による理解

三明@宇宙史研究センシー初期状態と終状態両方を実験的に決定可能

√大きな楕円的方位角異方性(v2)+完全流体力学計算

- 極めて早い thermalization~ 0.6 fm/c
 - 課題1;なぜこんなに早く熱化できるのか?(初期状態は?)
- 完全流体(粘性なし)で良く説明!

課題2;定量的に粘性は?(QGP物性は?)

現実の原子核・原子核衝突で起こっ ている揺らぎからQGPの粘性の情報

現実の原子核・原子核衝突では核子数と衝突確率 1 = 6.0 fm が有限であることから、揺らぎが発生→高次のフー リエ成分 Slide from Marco vanLeeuwen Schenke and Jeon, Phys.Rev.Lett.106:042301 v [hu] ALICE, PLB, 708, (2012) t = 0.4 /m 10 Pb-Pb 2.76 TeV, 0-2% central $\eta/s = 0$ 2 < pt < 2.5 GeV/c 300 1.015 1.5 < p_ < 2 GeV/c 0.8 < IAni < 1.8 250 1.01 -10 1.005 C(A0) -10 -5 - 3 200 x [fm] [fm] 時間発展 150 0.995 100 y2/ndl = 33.3 / 35 1.00 ratio 50 0.99 -10 -10 -5 0 5 10 Ad [rad] $\eta/s = 0.16$ x [fm] -5 -105 -10 10 三明@宇宙史研究センター 8 x [fm]

非常に小さい比粘性 (n/s)

Shear-bulk viscosity

- √比粘性(ずれ粘性/エントロピー)
 - η /s ~ 0.20 at LHC, η /s ~ 0.12 at RHIC
- **√**QGPは、どの物質よりも粘性が小さい"サラサラ"な物質!?

②ジェットクエンチ QEDにおけるエネルギー損失 ~ Bethe-Bloch Eq.~

http://pdg.lbl.gov/2008/reviews/

• 入射荷電粒子と物質中の原子電子がクーロン相互作用

√ 原子電子を電離することによって、入射粒子はエネルギー損失

✓エネルギー損失量は物質の電子密度(Ne)に比例

✓エネルギー損失量は入射粒子のz²に比例

エネルギー損失量から物質の電子密度を測定できる→「プローブ」
 Effi@宇宙史研究センター
 12

QCDにおけるエネルギ

"Jet quenching" in nucleus • ジェット成分の変化? nucleus collision.

✓AA衝突で2つのパートンが Hard Scatt. を起こす

- 一つは真空に飛び出しジェッ トを生成し、
- 他方は、QGP中を突き抜ける 際に特徴的なエネルギー損失 を受ける

√現れる現象;

- ジェットの消失/減衰
- 高横運動量粒子の減少

✓pp衝突の重ね合わせと比較

Nuclear Modification Factor;

	$R_{\rm AA} = -$	"hot/dense QCDmedium"	$_$ $dn_{ m AA}/dp_{ m T}dy$
		"QCD vacuum"	$= \frac{1}{\langle N_{\rm binary} \rangle \cdot dn_{\rm pp} / dp_{\rm T} dy}$

- ✓AA中心衝突では高横運動量領域で「減 少」
- ✓dAuではなく、AuAuで見られること からJet Quenchか?

✓ 3次元理想流体力学模型による 時間発展計算

- Glauber w. Wood-Saxonを仮定
- RHIC Au+Au central collision
- LHC Pb+Pb central collision

✓ RHICからLHCで約2倍に

グルオン密度比~2に対応!?

パートン質量による違い

✓ B中間子からのJ/ψと ● D中間子のRAAを比較 ● D中間子; charmを含む ● B中間子;bottomを含む ✓ 理論予測通り

 $\Delta E_{\rm gluon} > \Delta E_{\rm quark} > \Delta E_{\rm charm} > \Delta E_{\rm bottom}$

研究の流れ: なぜRHICからLHCへ

	RHIC	LHC
√ s _{NN} (GeV)	200	5500
T/T _c	1.9	3.0-4.2
ε(GeV/fm ³)	5	15-60
τ _{QGP} (fm/c)	2-4	>10

存性

→粘性やdE/dxの

エネルギー密度依

✓LHCをRHICと比べると、

 ・到達温度やエネルギー密度が数倍大きい
 ・ジェットの生成量(数桁)
 ・

✓加速器の進化/建設が不可欠

		Machine	Beam+Target	Ecm [GeV]
	1987 -	米国・BNL・AGS	Si+Au	5A
	1992 -	米国 BNL・AGS	Au + Au	4A
	2000 -	米国・BNL・RHIC	Au + Au	130A - 200A
	2011 -	欧州・CERN・LHC	Pb+Pb	2900-6300A
	2025	独・FAIR	p, C, Ca ,,, Au	2 - 5 A
	2023??	露・NICA、中・HIAF、	p,,,U?	4 - 11A、()、2-6.2A
三明@宇霞		日・J-PARC		

Facility for Antiproton & Ion Research: FAIR

Experiments at NICA $\sqrt{s_{NN}} = 4 - 11 \text{ GeV}$

[http://mpd.jinr.ru/wp-content/uploads/2016/04/MPD_CDR_en.pdf]

Slides shown by Nu Xu, Tsukuba, March 26, 2018 22

High Intensity Accelerator Facility (2023)

Nu Xu "Symposium of the Tomonaga Center for the History of the Universe" Tsukuba University, March 26 - 27, 2018 43/47

三明@宇宙史研究センター

Slides shown by Nu Xu, Tsukuba, March 26, 2018 23

✓LHC, RHICで探索できない ρ / ρ 0~5-10の高密度状態の研究 Ξ明@宇宙史研究センター

課題1;初期状態の解明

$$Q_{\rm s}^{\rm p} \sim \alpha_{\rm s} \frac{xg(x, Q_{\rm s}^2)}{\pi R^2}$$
$$\rightarrow Q_{\rm s}^{\rm A} \sim \alpha_{\rm s} \frac{Axg(x, Q_{\rm s}^2)}{\pi (r_0 A^{1/3})^2} \propto A^{1/3}$$

✓なぜこんなに早く熱化した QGP状態ができるのか?

√そもそも初期状態は?

⇒Gluon saturation?

- ➡Color Glass Condensate状態?
- √高エネルギーではグルオン が大量に生成→どこかで飽 和するはず
 - Gluon saturationの明確な 証拠?
 - 原子核の方が見つけやすい

初期状態解明に向けたR&D (中係)

 LHC; √sが最高 $x \sim \frac{2p_{\rm t}}{\sqrt{s}} \exp(-y)$ ●yが大きく、ptが小さい ➡超前方におけるフォトン測定 √超高粒子密度環境下の測定 \sqrt{Si} - W sampling cal.

✓ Small xのフロンティア

- •LG; 1x1cm pad (analog)
- HG; $30 \times 30 \mu m$ (digital)

✓ Mini-Focal test 7月~9月

✓ RHIC STAR実験における ビームエネルギースキャン ● 臨界点探索 ● 高次の揺らぎ、v1, v2, K/π ✓ 次期加速器・実験計画を左右 する重要な探査実験

√s _{NH} (GeV)	Events (10 ^s)	BES II / BES I
200	350	2010
62.4	67	2010
54.4	1200	2017
39	39	2010
27	70	2011
19.6	400/36	2019-20 / 2011
14.5	300 / 20	2019-20 / 2014
11.5	230/12	2019-20 / 2010
9.2	160/0.3	2019-20 / 2008
7.7	100/4	2019-20 / 2010

Colliderで強度不足でもFixed target実験も!

Z. Xu, ICPAQGP2015

✓√s~10-20 GeV前後に種々の信号において特徴的変化!?

➡そこに何かありそう!

揺らぎによる臨界点探索(江角)

✓相転移によると、臨界点付近では 相関長が伸びる

- 揺らぎが変化する!
 - Cumulant 1-4 ; mean, sigma, skewness, kurtosis
- ✓より高感度の揺らぎ観測のために、
 高次のモーメントを求める計算方
 法を新提案
 - T.Nonaka, S.Esumi et.al., PRC95,064912(2017)
 - 200GeVにおいて6次のモーメント
 を初めて測定
 - ➡野中俊宏氏博士論文

√わかったこと;

- QGP生成とQGP物性の手がかり
 - ➡流体力学的理解
 - ➡特徴的エネルギー損失の様子
- **√わ**かってないこと;
 - なぜこんなに早く熱化できるのか?(初期 状態は?)
 - ➡LHC実験FoCalプロジェクト
 - QCD相転移の構造(臨界点、次数)

➡RHIC STAR実験Beam Energy Scan

√将来; J-Parc, Fair, HIAF, NICA

RHIC-STAR実験(2019-2020)と J-PARC重イオン実験(2023-)

- 物理目標
 - 衝突エネルギー走査実験(@RHIC-STAR実験)や高ビーム輝度を用いた 重イオン実験(@J-PARC)による臨界点の探索、相構造の研究

国際共同実験

RHIC-STAR実験 (2019-2020)

- 日本グループの新規参加. 衝突反応面検出器の建設
- ・ 揺らぎ、集団運動の測定. これまでの10倍の統計 J-PARCでの重イオン実験
 - 2023年の開始を目指す.
 - ρ/ρ₀~ 5-10の高密度物質の研究.

CAMBRIDGE Catalogue

Home > Catalogue > Quark-Gluon Plasma

Quark-Gluon Plasma

Series: Cambridge Monographs on Particle Physics, Nucle

Kohsuke Yagi Urawa University, Japan

Tetsuo Hatsuda University of Tokyo

Yasuo Miake University of Tsukuba, Japan

Hardback (ISBN-10: 0521561086 | ISBN-13: 97805215610 For price and ordering options, inspection copy requests, and rea UK, Europe, Middle East and Africa | Americas | Australia and Ne

✓Bjorkenの描像

- ローレンツ収縮のために原子核衝突は短時間の間に起こり、その短時間にハドロンの多重発生が起こるが、固有時で以後、それらは自由粒子として飛び出す。
- 到達エネルギー密度の推定
- √到達エネルギー密度
 - QGP生成に十分な値

$$\varepsilon_{Bj} = \frac{1}{\pi R^2} \frac{1}{c\tau_0} \frac{dE_T}{dy}$$

$$\approx 4.6 \text{GeV/fm}^3$$

$$> \varepsilon_c \approx 0.6 - 1.2 \text{GeV/fm}^3$$

$$n_{i} = \frac{g_{i}}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2}dp}{e^{(E_{i} - \mu_{i})/T} \pm 1}$$

√様々な種類のハド ロンの生成量比が「温 度」と「化学ポテン シャル」というたっ た2つのパラメーター で説明できた! √クォークの化学平 衡を仮定した統計模 型と測定データが良 い一致

 化学平衡時の温度 (~180MeV)は
 予想される相転移点 付近

- ✓ 高横運動量領域での p/π 比に異常を発見
- ✓ Au+Au周辺衝突では p/π 比は、eeやpp衝突 と同等であるが、
- ✓ Au+Au中心衝突では p/π 比は非常に大きい
 - Fragmentation process では ee/ppに見られるように npくn_π

✓ Au+Au衝突では別の生成機構が!?

Quark Recombination Model (Quark Coalescence Model)

注目される方位角異方性測定

- √反応関与部と非関与部
 - 核子の運動量に比べビーム運動 量が圧倒的に大きい
 - 相対論的効果により極めて短い 衝突時間

√方位角異方性とは

 非中心衝突における反応関与部 は衝突軸に対し異方性

●アーモンド型!

- ✓放出粒子の運動量の方位角異 方性を測定
- 座標空間の方位角異方性が 生成粒子の運動量空間異方 性に転換

- ✓中心衝突から周辺衝
 突まで様々な楕円率
 に対して方位角異方
 性を測定
- ✓楕円率に比例した方 位角異方性
 - →確かに座標空間

から運動量空間の 異方性に転換された

QGP生成の証拠3;方位角異方性

- √2体散乱 ・運動学的に明確 • back-to-back scatt. ➡片方からもう一方がわかる $p_{3\perp} = p_{4\perp}$ √プローブ; エネルギーのわかったパート ンが物質中を通過する際のエ ネルギー損失を測定
 - QGP特有のエネルギー損失?

"Jet quenching" in nucleus • ジェット成分の変化? nucleus collision.

✓AA衝突で2つのパートンが Hard Scatt. を起こす

- ・一つは真空に飛び出しジェッ トを生成し、
- 他方は、QGP中を突き抜ける 際に特徴的なエネルギー損失 を受ける

√現れる現象;

- ジェットの消失/減衰
- 高横運動量粒子の減少

QEDにおけるエネルギー損失 ~ Bethe-Bloch Eq.~

http://pdg.lbl.gov/2008/reviews/

- 入射荷電粒子と物質中の原子電子がクーロン相互作用
 - √ 原子電子を電離することによって、入射粒子はエネルギー損失
 - ✓エネルギー損失量は物質の電子密度(Ne)に比例
 - ✓ エネルギー損失量は入射粒子のz²に比例
- エネルギー損失量から物質の電子密度を測定できる→「プローブ」

QEDにおけるエネルギー損失。 ~Bresmsstrahlung~

荷電粒子のエネルギー損失;制動放射も!

衝突型 √Bethe-Bloch 放射型 √Bethe-Heitler (thin; L<< λ) √Landau-Pomeranchuk-Migdal (thick; L>> λ)

✓dE/dxの測定から物性情報 →「プローブ」

例) QEDプラズマ中のdE/dx測定

QCDにおけるエネルギ

✓pp衝突の重ね合わせと比較

Nuclear Modification Factor;

R	_ "hot/dense QCDmedium"	$_$ $dn_{ m AA}/dp_{ m T}dy$
$n_{\rm AA}$	– "QCD vacuum"	$= \frac{1}{\langle N_{\rm binary} \rangle \cdot dn_{\rm pp}/dp_{\rm T} dy}$

- ✔AA中心衝突では高横運動量領域で「減 少」
- ✓dAuではなく、AuAuで見られること からJet Quenchか?

