

HL-LHC ATLAS実験の内部飛跡 検出器に用いる半導体検出器

Koji Nakamura (KEK) On behalf of ATLAS ITK Pixel group

2019/6/3

Large Hadron Collider (LHC)

2019/6/3

LHC実験→HL-LHC実験

- 2018年のRunが終わり147fb⁻¹のデータが収集完了。現在は LS2(long shutdown2)中。
- LS2後は3年間で150fb⁻¹とり>13TeVで300fb⁻¹の予定
- LS3で検出器アップグレード2026年からHigh Luminosity LHC (HL-LHC)開始で3000fb⁻¹を目標
 - エネルギーは14TeV
 - 瞬間ルミノシティーはleveling 後で5-7x10³⁴cm⁻²s⁻¹

2019/6/3

検出器アップグレード

検出器アップグレード

2019/6/3

Technical Design Report for HL-LHC

ITk strip tracker

Submission: Dec 2016 Approval: June 2017

Liquid Argon Calorimeter

Submission: Sep 2017 Approval: March 2018

ITk pixel tracker

Submission: Dec 2017 Approval: April 2018

Tile Calorimeter

Submission: Sep 2017 Approval: March 2018

Muon spectrometer Submission: July 2017 Approval: Dec 2017

Trigger / Data Acquisition

Submission: Dec 2017 Approval: April 2018 High Luminosity LHC 用の設計書が完成

- いろんな検出器部分
 の 設計書が全6編

2018-2019年はシリコ ン検出器量産にむけ た準備中

2019/6/3

検出器アップグレード

事象あたりの陽子衝突数 現在まで (2x10³⁴cm⁻²s⁻¹) 平均10-60 衝突 (デザインは25)

Mean Number of Interactions per Crossing

7x10³⁴cm⁻²s⁻¹では?

2019/6/3

検出器アップグレード

事象あたりの陽子衝突数 現在まで (2x10³⁴cm⁻²s⁻¹) 平均10-60 衝突 (デザインは25)

Mean Number of Interactions per Crossing

7x10³⁴cm⁻²s⁻¹では? 平均140衝突

アップグレード(ITK)レイアウト

アップグレード(ITK)レイアウト

2019/6/3

朝永センター構成員会議

2019/6/3

放射線耐性

- 4000fb⁻¹で予想される放射線量
 - NIEL: 3層目 2.8x10¹⁵ neq /cm² 最内層 2.6x10¹⁶neq/cm²
 - TID:3層目1.6MGy 最内層 19.8MGy、

1,2層目は2000fb-1で

入れ替え予定

- 日本グループ:ピクセル検出器の開発 バレル部3-5層目を中心に開発
 近ホト
 - 高効率なセンサーの開発
 - 読み出しASICとDAQの開発
 - モジュール化(バンプボンド)
 - Flex基板の設計、モジュールとの接着
 - サポートフレームへのインストール

2019/6/3

- 日本グループ:ピクセル検出器の開発 バレル部3-5層目を中心に開発
 - 高効率なセンサーの開発
 - 読み出しASICとDAQの開発
 - モジュール化(バンプボンド)
 - Flex基板の設計、モジュールとの接着
 - サポートフレームへのインストール

2019/6/3

- 日本グループ:ピクセル検出器の開発 バレル部3-5層目を中心に開発
 - 高効率なセンサーの開発
 - 読み出しASICとDAQの開発
 - モジュール化(バンプボンド)
 - Flex基板の設計、モジュールとの接着
 - サポートフレームへのインストール

接着冶具の開発 接着剤の選定 ワイヤーボンディング

内部飛跡検出器のアップグレード

2019/6/3

Group photos @ Testbeam

March 2013 DESY Testbeam

June 2017 CERN TestBeam

Sep 2015 CERN TestBeam

June 2016 CERN TestBeam

July 2018 CERN TestBeam

Oct 2018 CERN TestBeam

Oct 2017 CERN TestBeam

Feb 2017 Fermilab TestBeam

Feb 2018 Fermilab TestBeam

Feb 2019 Fermilab TestBeam

- 2020年度はセンサー・モジュールの事前量産(Pre-Production)で全体の10%の製造
- ・ 2021年度から2.5年間で日本グループは約2000台の 検出器を製造予定(これは全3-5層のモジュールの約 20%)
 - センサーの製造および検査
 - バンプボンドおよび検査
 - モジュールとFlex基板実装および検査
 - CERNへ出荷(2023年度完了予定)
- その後はCERNで構造体に取り付け、ATLAS検出器に 挿入(2026年完了予定)

まとめ

まとめ

検出器アップグレード

Mean Number of Interactions per Crossing

7x10³⁴cm⁻²s⁻¹では?

2019/6/3

- 基本的にはBreak down電圧で決まる。
 - 浜ホトセンサーは優秀で照射前から1000V耐圧
 - 一他のベンダーはFD+50V程度が関の山放射線損傷によって
 Break down 電圧は上がる→1.3x10¹⁶n_{eq}/cm²で1000V出ればよいが…
 - ただし、問題にしているのは一桁上 Leak Current 4mA/(3.4cm²)も危険/冷却困難 (2000V 4mA は8W!!)
 - 1000Vくらいまでに抑えたい。
- ハイブリットの場合は放電対策も必要
 - ASIC-Sensor間には電位差があって放電の危険がある。
 - モノリシックではこの問題はない?→要確認

(ダイシング/裏面処理の技術)

26

朝永センター構成員会議

2019/6/3

データレート

2019/6/3

- HL-LHCなら5Gbpsで十分
- FCC (PU=1000)だと?
 - 一分解能が十分高いなら占有率
 は7倍.
 - ピクセルサイズが小さいと
 - Address のビット数が大
 - 100x384 (16bit=7bit+9bit)
 - 250x1000(20bit=9bit+11bit)
 - Eta 方向のクラスターサイズが大 (2.5倍?)
 - Pixel regionの最適化?
 - トリガーレート ? A few MHz
- ・ ちゃんとシミュレーションする 必要あり
 - 今後の課題
 - 最低5-10Gbpsは必要か?

