ビッグバン数秒後の残照に標準理論の綻びを探る COBAND計画

令和元年度 定例 第7回 物理学セミナ

2019年11月20日

武内勇司 (宇宙史研究センター)

素粒子

→物質の究極の構造 フェルミ粒子・ゲージ粒子・ヒッグス粒子

クォーク

素粒子

→物質の究極の構造 フェルミ粒子・ゲージ粒子・ヒッグス粒子

電磁相互作用 光子 (フォトン)

<u>弱い相互作用</u> ウィークボゾン

強い相互作用 グルーオン

ニュートリノとは

- 素粒子、フェルミオン、レプトン
- 電荷を持たない. 弱い相互作用をする.
- 3種類ある (v_e, v_µ, v_τ)
 - 非常に小さい質量があり、3種類の間で異なった質量をもつ、質量そのものは測定されていない。
- 宇宙で光子の次に多いと、予言されている.
- 寿命不明 下限値のみ
- 粒子・反粒子の区別があるか不明。
 マヨラナ粒子かも知れない。

Neutrino

- 質量固有状態 (v₁, v₂, v₃)
- フレーバ固有状態 (v_e, v_u, v_τ) は、質量固有状態ではない

- →ニュートリノフレーバは、飛行中に振動(変化)する。これに より質量二乗差 $(\Delta m_{12}^2, |\Delta m_{23}^2|)$ が測定されている.
- しかし、質量そのものは、まだ測られていない。
- 実は粒子・反粒子に区別があるか(Dirac or Majorana)も分 かっていない

フェルミオン質量

- ニュートリノ質量階層性 (m₁<m₂<m₃ or m₃<m₁<m₂?)
- 不自然に小さいニュートリノ質量

Recombination (Photon decoupling) 宇宙の晴れ上がり

378,000 years after the Big Bang

- T~3000K (E=k_BT~0.3eV)
- e⁻ and p⁺ become bound to form neutral H atoms
- Photons get traveling freely though universe

CMB Temperature Fluctuations by Planck Satellite

- T~3000K → 2.7K (Red shift) Z~1100
- Almost uniform temperature, but very small fluctuations
- Displayed by Red (hot) and blue (cold), but difference between red and blue is ${\sim}1/100{,}000$

CMB is a snapshot of the Universe 378,000 years

This tiny fluctuation evolves into matter density in the universe at present.

Distribution of galaxies from 2MASS Redshift Survey

Cosmic Energy Budget 宇宙のエネルギー内訳

我々に見えている物質は、宇宙の5% これも、CMBなどの測定から明らかになった。

Results from CMB on the universe

Parameter	Planck	WMAP	Difference	
	("CMB+Lens")	(9-year)	value	WMAP σ
$\Omega_b h^2$	0.02217 ± 0.00033	0.02264 ± 0.00050	-0.00047	0.9
$\Omega_c h^2$	0.1186 ± 0.0031	0.1138 ± 0.0045	0.0048	1.1
Ω_{Λ}	0.693 ± 0.019	0.721 ± 0.025	-0.028	1.1
au	0.089 ± 0.032	0.089 ± 0.014	0	0
$t_0~({ m Gyr})$	13.796 ± 0.058	13.74 ± 0.11	$56 \mathrm{Myr}$	0.5
$H_0 ~({\rm km~s^{-1}Mpc^{-1}})$	67.9 ± 1.5	70.0 ± 2.2	-2.1	1.0
σ_8	0.823 ± 0.018	0.821 ± 0.023	0.002	0.1
Ω_b	$0.0481^{ m b}$	0.0463 ± 0.0024	0.0018	0.7
Ω_c	$0.257^{ m b}$	0.233 ± 0.023	0.024	1.0

Various parameters on the early universe are obtained from CMB.

• Age of the universe. Hubble constant, matter density, dark matter density, dark energy density, …

Neutrino decoupling

$$T > TWEV$$

$$T < TWEV$$

$$T_{\nu} = T_{e} = T_{\gamma}$$

$$\nu + \bar{\nu} \leftrightarrow e^{-} + e^{+} \leftrightarrow \gamma\gamma$$

$$\bar{\nu} + p \leftrightarrow e^{+} + n \quad \nu + n \leftrightarrow e^{-} + p$$

$$\nu + e \leftrightarrow \nu + e$$

Neutrino decoupling

When neutrinos were relativistic (E>1 MeV), e^{\pm} , v_e , \overline{v}_e were well interacted for each other and in thermal equilibrium

 v_e

- electron-neutrino scattering
 - $\begin{array}{l} \ e^{\pm} + \nu_e \leftrightarrow e^{\pm} + \nu_e \\ \ e^{\pm} + \overline{\nu_e} \leftrightarrow e^{\pm} + \overline{\nu_e} \end{array}$

• Annihilation-pair creation-- $e^+ + e^- \leftrightarrow v_e + \overline{v_e}$

 $\sigma\simeq G_F^2 E^2$, $\rho_{\nu}\propto T^3$

• e^{\pm} and γ are also in thermal equilibrium - $e^{+} + e^{-} \leftrightarrow 2\gamma$

CMBとCvBの温度

エントロピー密度 $s/V \propto g_{eff}T^3$

e⁺e⁻ ↔ γγ の場合

光子(ボゾン)+電子・陽電子(フェルミオン)の自由度 $g_{\rm eff} = 2 + (2 + 2) \times \frac{7}{8}$

 γ だけの場合 $g_{eff} = 2$

エントロピー保存
$$2T_{\gamma}^3 = \left(2 + (2 + 2) \times \frac{7}{8}\right) T_{\nu}^3$$

$$T_{\nu} = \left(\frac{4}{11}\right)^{\frac{1}{3}} T_{\gamma} = 1.95K$$

 $kT_{\nu} = 0.168 \text{meV}$

CMBとCvBの密度
ニュートリノ密度
(fermion)
光子の場合

$$dn_{\nu} = \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{\exp(p/kT_{\nu}) + 1}$$

 $dn_{\gamma} = \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{\exp(n/kT_{\nu}) - 1}$

$$(2\pi)^{-1} \exp(p/kT_{\gamma}) = 1$$

$$n_{\nu}/n_{\gamma} = \left(\frac{kT_{\nu}}{kT_{\gamma}}\right)^{3} \frac{\int_{0}^{\infty} dx \frac{x^{2}}{e^{x} + 1}}{\int_{0}^{\infty} dx \frac{x^{2}}{e^{x} - 1}} = \left(\frac{T_{\nu}}{T_{\gamma}}\right)^{3} \frac{\frac{3}{4}\Gamma(3)\zeta(3)}{\Gamma(3)\zeta(3)} = \frac{4}{11} \times \frac{3}{4} = \frac{3}{11}$$

 $n_{\gamma} = 411$ 個/cm³ (2自由度)より

$$n_{\nu} = n_{\overline{\nu}} = \frac{411}{2} \times \frac{3}{11} = 56 \text{@}/\text{cm}^3$$

Neutrino flux v.s. energy

Neutrino Detector (Super Kamiokande)

Neutrino Detector (Super Kamiokande

ニュートリノ崩壊

- □ 重たいニュートリノは、軽いニュートリノへ崩壊可能
 - $\Box \boldsymbol{\nu}_3 \rightarrow \boldsymbol{\nu}_{1,2} + \boldsymbol{\gamma}$
 - / 但し寿命は、宇宙年齢よりもはるかに長い
- → ニュートリノ源として宇宙背景ニュートリノ(CvB)を用いたニュートリノ崩壊探索実験の可能性

標準模型でのニュートリノ崩壊(遷移放射)

振動実験から

 $\Delta m_{12}^2 = 7.65 \times 10^{-5} \ eV^2$ $|\Delta m_{23}^2| = 2.40 \times 10^{-3} \ eV^2$

もし $m_1^2 \ll m_2^2$ とすると $m_2 = 8.7 meV$ $m_3 = 50 meV$

P.B.Pal and L.Wolfenstein, Phys. Rev.D23, 766-773(1982)

標準模型では、ニュートリノの寿命は非常に長い。 cf 宇宙年齢138億年 ~ 10¹⁰年

ニュートリノの磁気能率

ベクトル結合項は、ゲージ不変でない($\epsilon \rightarrow q$ の置き換えでOにならない) $\epsilon_{\mu} \bar{\nu}_{j} \gamma^{\mu} \nu_{i}$

磁気能率に寄与するラグラジアンの項 $\epsilon_{\mu} \bar{\nu}_{jL} i \sigma^{\mu\nu} q_{\nu} \nu_{iR}$ $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}]$

σ^{μν}は,ガンマ行列を二個含んでいるのでニュートリノの カイラリティーはL-R結合

・ $\bar{v}_{jL}i\sigma^{\mu\nu}q_{\nu}v_{iL}$ や $\bar{v}_{jR}i\sigma^{\mu\nu}q_{\nu}v_{iR}$ の項は許されない

ニュートリノの磁気能率

標準模型での寿命予想が長いのは、 遷移磁気能率項に対す る強い抑制効果のため

標準模型: SU(2)_L x U(1)_Y

標準模型では、Wボゾンは、Lカイラ リティのフェルミオンとのみ結合

ニュートリノ質量項 $m_{\nu}(\bar{\nu}_L \nu_R + \bar{\nu}_R \nu_L)$ を通じて L-R結合 $\rightarrow m_{\nu}$ で抑制

(遷移磁気能率の場合)内線を電子、ミュー、タウが寄与し、打ち消し合う
 → GIM抑制

$$m_{L} + m_{L} + m_{L} + m_{L} = O\left(\frac{m_{\tau}^{2}}{m_{W}^{4}}\right)$$
²⁹

Motivation of v-decay search in CvB

→標準模型を超える物理の寄与がほんの少しでもあれば、劇的に寿命は短くなり得る

例えば L-R symmetric model では, Right-handed と couple するボゾン W_R^{\pm} , Z_R が存在. ただしすごく重たいので今までの観測にかかっていない.

→ τ = 0(10¹⁷ yrs)まで寿命が短くなる可能性あり.

L-R 対称模型

もしRight-handedのinteraction をするW_RがW_Lと混合していると

$$\begin{pmatrix} W_1 \\ W_2 \end{pmatrix} = \begin{pmatrix} \cos\zeta & -\sin\zeta \\ \sin\zeta & \cos\zeta \end{pmatrix} \begin{pmatrix} W_L \\ W_R \end{pmatrix} \quad W_L \text{ and } W_R \text{ はそれぞれ L, Rと結合する} \\ \zeta & \text{は, 混合角} \end{pmatrix}$$

$$\zeta & \text{は, 混合角}$$

$$\int D \text{ 10} \text{ 5} \text{ 10} \text{ 5} \text{ 10} \text{ 5} \text{ 10} \text{ 1$$

- 我々が知っているW粒子は、実は、W1のことでW2は非常に 重くてまだ見つかっていないだけかもしれない。
 - *M_{W₂}*無限大で ζ = 0で標準模型と一致.
 - 現在の測定下限値 M_{W2} > 1.8 TeV/c², ζ < 0.013

ATLAS:EPJ C72(2012)2056

 $M_{W_2} = 1$ TeV, $\zeta = 0.02$ というシナリオは十分あり得る

L-R 対称模型でのニュートリノ崩壊(磁気能率)

M. Beg, W. Marciano and M. Rudeman Phys. Rev. D17 (1978) 1395-1401 ニュートリノ崩壊幅をSU(2)_L × SU(2)_R × U(1)模型で計算

WがRight handと結合できるの で、内線の荷電レプトン質量項 を通じて L-R結合 $\rightarrow m_v$ の抑制がない

ほぼタウのダイアグラムのみが 寄与する → GIM抑制がない

$$V_{jL}$$

$$V_{jL}$$

$$U_{L}$$

$$W_{1}$$

$$W_{1}$$

$$V_{iR}$$

 $M_{W_2} = 1 \text{ TeV}, \zeta = 0.02,$ $m_3 = 50 \text{ meV を仮定する}$ \subset $\Gamma_{SM} \sim (10^{43} yr)^{-1}$ \int $\Gamma_{LRM} \sim (10^{17} yr)^{-1}$

LRS: $SU(2)_{I} \times SU(2)_{R} \times U(1)_{R-1}$

ζ~0.02による抑制のみ

 $W_1 \simeq W_L - \zeta W_R$

PRL 38,(1977)1252, PRD 17(1978)1395

10²⁶の増幅

宇宙背景ニュートリノ崩壊探索のMotivation

- 標準模型での寿命予想 *τ* = 0(10⁴³ yrs)
- 現在の実験的寿命下限値 τ > 0(10¹² yrs)
 S.Kim et al., JPSJ 81 (2012) 024101
- *τ* > 0(10¹² yrs)は、全く手が付けられていない未踏の領域
 →何があっても全然不思議ではない

もし、CvBからのニュートリノ輻射崩壊光が標準模型予想より もずっと短い10¹² yrs < $\tau(v_3) \ll 10^{43}$ yrs で観測されたら

→標準模型を超える物理の発見!!!

CvBの直接検出!!!

• ニュートリノ質量の絶対値測定!!! $\leftarrow m_3 = (m_3^2 - m_{1,2}^2)/2E_{\gamma}$

ニュートリノ質量と崩壊光子エネルギーとの関係

 $E_{\gamma} = \frac{m_3^2 - m_2^2}{2m_2}$

- 振動実験から
 - $\left| \Delta m_{23}^2 \right| = \left| m_3^2 m_2^2 \right| = 2.4 \times 10^{-3} \ eV^2$
 - $\Delta m^2_{12} = m^2_2 m^2_1 = 7.65 \times 10^{-5} \, eV^2$
- CMBの揺らぎ(Plank+WP+highL) とバリオン音響振動(BAO)から $-\sum m_i < 0.23 \text{ eV}$

→50meV< m_3 <87meV

 $E_{\gamma} = 14 \sim 24 \text{meV}$ $\lambda_{\gamma} = 51 \sim 89 \mu \text{m}$

$$m_3=50meV$$

 $E_{\gamma}=24.8meV$
 $E_{\gamma}=24meV$
 $m_2=8.7meV$
 $m_1=1meV$

$\lambda = 50 \mu m$

COBAND (COsmic BAckground Neutrino Decay) Search for Neutrino decay in Cosmic background neutrino →To be observed as photons in neutrino decays

ニュートリノ崩壊探索実験 COBAND(COsmic BAckground Neutrino Decay) Collaboration Members (2019年11月)

金信弘,武内勇司,飯田崇史,(武政健一),浅野千紗,(若狭玲那,笠島誠嘉,中 原瑳依子, 前川群, 山根 綾太, (大塚洋一) (筑波大学) TE SAS LAXA 松浦周二 (関西学院大学), 池田博一,和田武彦,長勢晃一 (JAXA/ISAS), 吉田拓生, 鈴木健吾, 竹下勉, 浅胡武志(福井大学), 石野宏和, 樹林敦子 (岡山大学), 美馬覚 (理化学研究所), 木内健司(東京大学), 加藤幸弘 (近畿大学), 羽澄昌史,新井康夫, 倉知郁生 (高エネルギー加速器研究機構), 浮辺雅宏, 志岐成友, 藤井剛, 大久保雅隆 (産業技術総合研究所), 川人祥二 (静岡大学) Erik Ramberg, Paul Rubinov, Dmitri Sergatskov (Fermilab), RAVITY Soo-Bong Kim (Seoul National University), Yong-Hamb Kim, Hyejin Lee (IBS/Center for Underground Physics)

地上で50μm光は観測可能か?

大気は、50µmを透過しない。

地上で50μm光は観測可能か?

http://macroscope.world.coocan.jp/ja/edu/clim_sys/radiation/radiation.html

・地上付近の熱を持ったあらゆる物体から50µmが放射
 →大気圏外での観測が必須

黄道光(Zodiacal Emission)

- ・惑星間ダストによる太陽光の散乱(可視光付近)
 こちらは問題にならない
- 惑星間ダストからの熱輻射
 - 地球近傍のダストからの輻射 が問題

波長50µm域の黄道光

Infrared Space Observatory (ISO)

- ISOCAM/LW: 32×32 pixel array of SiGa (λ =5~16µm)
- 単一温度の黒体放射分布にFit (T~270K)

CvB radiative decay and Backgrounds

COBAND 実験提案

- ニュートリノ寿命測定感度目標 τ(ν₃) = 0(10¹⁴) yrs
- JAXA 観測ロケット S-520
 - <u>http://www.jaxa.jp/projects/rockets/s_rockets/index_j.html</u>
 - 直径: 520mm
 - ペイロード: 100kg
 - 到達高度: 300km
- 高度200~300km で200秒の測定
 - 主鏡直径20cm, 焦点距離80cmの望遠鏡
 - 光学系(主鏡, 副鏡, フィルター, シャッター, 回折格子等)は
 全て1.8K程度に冷却
- □ 将来計画:衛星実験
 - 検出器の視野角を増やし、60日程度の測定
 - 10¹⁷年の測定感度を目指す

COBAND 実験の要求する光検出器

- ニュートリノ崩壊を同定するため λ~50μm域スペクトル 測定により崩壊光子エネルギー端検出が重要
- 光強度測定の系統誤差 << 光子数の統計誤差.

λ~50µm (E=25meV) 単一光子検出が可能な性能

Dark count rate が到達可能な光強度測定の感度を決める

Cryogenic amplifier readout

COBANDロケット実験 デザイン

- 焦点位置にλ=40-80µm (16-31meV) をカバーする回折格子と 50(波長方向) ピクセル配列の遠赤外光検出器(STJ)
 - □ 各々のピクセルで波長ごと(Δλ = 0.8µm)の光子計数
 - □ 1ピクセル当たりの受光面積は400µmx400µm (視野角400µrad x 400µrad)

COBAND rocket experiment sensitivity

- 200-sec measurements with a sounding rocket
- 20cm dia. and 80cm focal length telescope and grating in 40~80 μ m range
- Each pixel in 400µm×400µm×50pix. array counts number of photons with detection efficiency of 22%

超伝導状態では,フェルミ準位*ε_F*の付近の準位の電子二個が2∆の束縛 エネルギーにより,Cooper 対を形成 → エネルギー準位にギャップが 生じる

	Si	Nb	Та	AI	Hf
Tc[K]		9.23	4.48	1.20	0.165
∆[meV]	1100	1.550	0.7	0.172	0.020

 $\Delta \sim 1.8 k_B T_C$ (BCS theory)

超伝導トンネル接合素子 Superconducting Tunnel Junction (STJ) 超伝導体/絶縁層/超伝導体の構造(ジョセフソン接合)

接合面を挟んで電位差(|V|<2Δ/e)を印加 Δ: 超伝導ギャップエネルギー 超伝導体に吸収された光子のエネルギーにより複数のクーパー対が解離(励起)し, 生成された準粒子によって, エネルギーに比例したトンネル電流が発生.

超伝導ギャップ(Δ)は遠赤外フォトンのエネルギーよりもずっと小さい(Δ < 1meV)

→原理的には、遠赤外域一光子を検出可能

• 1μs 程度の比較的高速なパルス応答(Nbの場合)

→光子計数することでS/Nの著しい向上が期待

STJ energy resolution for near infrared photon

- $\Delta E \sim 130 \text{meV}$ @ E=620meV($\lambda = 2 \mu \text{m}$)
- Charge sensitive amplifier at room temp.
 □ Electronic noise ~ 100meV

In sub-eV ~ several-eV region, STJ gives the best energy resolution among superconductor based detectors, but limited by readout electronic noise.

STIの促症 Si Nb Al	Hf									
STJV) (外間) Tc[K] 9.23 1.20	0.165									
Nb/AI-STJ Δ[meV] 1100 1.550 0.172	0.020									
 最もよく使われていて,製法も確立 AI層を入れることにより,近接効果で∆~0.6meV 実用運転の温度 <400mK バックトンネルゲイン ~10 N_{q.p.}=25meV/1.7∆×10~250 σ_E/E~10% for E=25meV → 25meV の一光子検出も原理的には可能、分光光学系と組み合わせ → ロケット実験に使う光検出器候補 										
極低温増幅器による冷凍機内信号読出しにより 25meV単一光子検出へのブレークスルーを目指す.										
Hf-STJ										
• 我々を含め世界中のいくつかのグループが開発中または開発を試										
みたが,まだ実用段階のものができたという報告はない										
 N_{q.p.}=25meV/1./Δ~735 25moV/の一米スに対して20/のエラルゼー公報化 										

→ 分光光学系なしでエネルギー分布測定可能
 → 将来の衛星実験に使う光検出器候補

Both p-MOS and n-MOS show excellent performance at 3K and below.

SOI prototype amplifier for demonstration test

• Output load: $1M\Omega$ and $\sim 0.5nF$

We can compensate the effect of shifts in the thresholds by adjusting bias voltages. 55

STJ response to laser pulse amplified by Cold amplifier

Connect 20 μ m sq. Nb/Al-STJ and SOI amplifier on the cold stage through a capacitance

STJ response to laser pulse amplified by Cold amplifier

Demonstrated to show amplification of Nb/AI-STJ response to laser pulse by SOI amplifier situated close to STJ at T=350mK

Development of SOI cryogenic amplifier for STJ signal readout is now moving to the stage of design for practical usage!

電荷積分型増幅器の製作と評価

58

Other R&D components for COBAND rocket experiment

まとめ

- ビッグバンの数秒後に自由となり現在も存在し続ける宇宙背 景ニュートリノの中にニュートリノ崩壊現象を探す COBAND計画が筑波大を中心として進行中
 - ニュートリノ寿命感度1014年を目指したロケット実験
 - 将来計画として10¹⁷年の感度を目指した衛星実験
- もし標準理論の予想していない寿命で検出されると、
 -標準模型を超える物理の発見!!!
 - CvBの直接検出!!!
 - -ニュートリノ質量の絶対値測定!!!

まとめ

- 光検出器となる STJ素子は要求値を満たすものが手に入る
- STJ信号読出しのための極低温増幅器は開発が進んでいる
- ロケット実験の光学系(望遠鏡や回折格子など)の設計・製作も始まった。
- ロケット搭載冷凍機:試作機製作段階

各要素のプロトタイプでの実証が完了後、JAXAへの 提案が認められれば、ロケット実験は最短で2年後に 実施可能

マヨラナの場合のニュートリノ崩壊

- Rカイラリティーは、超重たいニュートリノなので始状態・終状態
 には現れない
- $\bar{v}_{jL}i\sigma^{\mu\nu}q_{\nu}\nu_{iR}$ の代わりに $\bar{\psi}_{jL}i\sigma^{\mu\nu}q_{\nu}\psi_{iL}^{\ C}$ も許されるので、 W_{L} 結 合のみ場合、標準模型との違いはない。(但し i=jのときは、マヨラ ナでは消える)
- ・ L-R模型での増幅はマヨラナ模型では、 ν の中の ψ_R 成分が $\frac{m_D}{m_R}$ で抑制されるので、10¹⁷yrの寿命の場合はマヨラナ模型を否定

- $\left| \Delta m_{23}^2 \right| = \left| m_3^2 m_2^2 \right| = 2.4 \times 10^{-3} \ eV^2$
 - $-\Delta m_{12}^2 = m_2^2 m_1^2 = 7.65 \times 10^{-5} \ eV^2$
- CMBの揺らぎ(Plank+WP+highL) とバリオン音響振動(BAO)から $-\sum m_i < 0.23 \text{ eV}$

→50meV< m_3 <87meV

 $E_{\gamma} = 14 \sim 24 \text{meV}$ $\lambda_{\gamma} = 51 \sim 89 \mu \text{m}$

$$m_3=50meV$$

 $E_{\gamma}=24.8meV$
 $E_{\gamma}=24meV$
 $m_2=8.7meV$
 $m_1=1meV$

 $E_{\gamma} = \frac{m_3^2 - m_2^2}{2m_2}$