

FUGINでみる銀河系における分子雲分布

Location of molecular clouds in the galaxy using FUGIN

Hiro Saito (南極)

00 Aims

- Establishment of method of molecular cloud identification
- Calculation of basic physical parameters of molecular clouds
- Reveal inner-structures of molecular clouds
- Identify far distant clouds
- Reveal size function and mass function of molecular clouds
- Distribution of clouds in the galaxy

Verification of Identification method

Identification Method using the results of Dendrogram

* Dendrogram : treat as a tree that represents the hierarchy of the structures

00 Aims

- Establishment of method of molecular cloud identification
- Calculation of basic physical parameters of molecular clouds
- Reveal inner-structures of molecular clouds
- Identify far distant clouds
- Reveal size function and mass function of molecular clouds
- Distribution of clouds in the galaxy

#01 Introduction

- FUGIN survey
 - * FUGIN : NRO45m + FOREST
 NRO 45m : High spacial resolution (~ 15" @ ¹²CO)
 0.2 pc @ 2.0 kpc (sagittarius arm)
 -> detectable inner structures in clouds
 FOREST : detect multi lines simultaneously
 ¹²CO : detect the structure with low column density
 ¹³CO : detect the inner structure in the clouds
 C¹⁸O : detect the dense gas in the clouds

#01 About FUGIN

Survey Strategy

- Area : the first quadrant (10d < L < 50d ; -1.0 < b < 1.0)
 - the third quadrant (198d < L < 236d ; -1.0 < b < 1.0)
- Line : ${}^{12}CO$, ${}^{13}CO$, $C^{18}O$
- effective velocity resolution : 1.0 km/s @ 3 mm
- effective angular resolution : 20" @ 12CO
- final map
 - * I,b grid = 8".5, velocity grid = 0.65 km/s
 velocity range = -100 km/s < v < 200 km/s
 Noise level : 0.8 2.7 K @ dV = 1.3 km/s (¹²CO)

02 Results of FUGIN data

FUGIN: ¹²CO (R) & ¹³CO (G) & C¹⁸O (B): NAOJ

Spitzer : 24um (R) & 8um (G) & 5.8um (B) : NASA

#03 Molecular Cloud Identification

Structure Identification using the results of Dendrogram

Dendrogram can identify the structures with various scales at the same time -> We can identify the molecular cloud as well as the internal structures

#04 Molecular Cloud Identification

- < Cloud candidates >
 - select separate velocity
 - final identified structures : 93799
 - Physical parameters of Trunks

 $dV = 1.0 - 18.3 \text{ km/s}, R(") = 19.8 - 2190", N(H_2) = 3.8 \times 10^{22} - 3.4 \times 10^{27} \text{ cm}^{-2}$

Molecular Cloud Identification

- final identified structures : 93799
- Physical parameters of Trunks

dV = 1.0 - 18.3 km/s, R(") = 19.8 - 2190", N(H₂) = 3.8×10^{22} - 3.4×10^{27} cm⁻²

< Example of Identified Structures >

- < Decision of Distance >
 - Using kinetic distance estimated using the LSR velocity
 - Near / Far distance problem

Check - The different of parameters between the distant clouds and the local clouds

- < Decision of Distance >
 - Using kinetic distance estimated using the LSR velocity
 - Near / Far distance problem

Check - The different of parameters between the distant clouds and the local clouds

Check - The different of the parameters between the distant clouds and the local clouds

- < Near/Far Check list>
 - Average I.I. (Average Intensity)
 - Virial ratio
 - hight of the structures
 - distribution of Arm in L-V diagram
 - (Image : distribution of intensity)

#05 Physical Parameters of Molecular Structures

- < Molecular Clouds >
- Physical parameters of Trunks
 - $dV = 1.0 18.3 \text{ km/s}, R(pc) = 0.03 72.4 \text{ pc}, M(Mo) = 0.1 3.0 \times 10^{6} \text{ Mo}$

#05 Physical Parameters of Molecular Structures

< Relation of Physical Prameters >

銀河系内における分子雲の分布

- ・比較的サイズが大質量の構造で調査(Mc > a few x 10³ Mo)
- ・銀河系内域(Rg < 7 kpc)

--> 2450個の分子雲で調査

物理量:dV = 1.4 ~ 14.9 km/s, R = 0.8 ~ 72 pc, Mc = 1000 ~ 3.0 x 10⁶ Mo

銀河系内における分子雲の分布

- ・銀河中心座標系に分子雲配置
- ・質量ごとに分布を調査 —> GMCは渦状腕内に存在すると期待 腕間にどの程度の質量の分子雲が存在するか

<結果>

銀河系内の分子雲分布調査

- 10³ Mo以上の分子雲(2450個)について調査
- 105 Mo以上の分子雲は概ね腕状に分布

sagittarius, scutum, norma腕を確認

- 腕間領域には104 Mo以上の分子雲はほとんど存在しない
 - たたし、sagittarius-scutum腕間の一部に104 Mo程度の分子雲が存在

渦状腕ごとの相違

- scutum腕とnorma腕では有意義な違いは見られない
- sagittarius腕は線幅、質量が小さい(?)

