テンソルネットワーワ法の素粒子物理学への応用

筑波大学•計算科学研究センター藏増嘉伸

＠宇宙史研究センター構成員会議，2019年11月21日

Plan of Talk

- Introduction
- Tensor Renormalization Group (TRG)
- Two Dimensional Ising Model
- Singular Value Decomposition
- Current Status for TRG Studies in Particle Physics
- Application to Finite Density System
- 2D Complex ϕ^{4} Theory at Finite Density
- Summary

Introduction

Partition function of lattice gauge theory

$$
Z=\int \mathcal{D} U \operatorname{det} D(\{U\}) \mathrm{e}^{-S_{g}(\{U\})}
$$

U : gauge field
D : Dirac matrix
Expectation value of physical quantity

$$
\bar{\psi} D \psi
$$

$$
\langle O\rangle=\int \mathcal{D} U O\left(\left\{U, D^{-1}\right\}\right) \operatorname{det} D(\{U\}) \mathrm{e}^{-S_{g}(\{U\})}
$$

Monte Carlo works for $\operatorname{det} D e^{-S}>0$ with importance sampling

$$
P=\frac{1}{Z} \operatorname{det} D(\{U\}) \mathrm{e}^{-S_{g}(\{U\})}
$$

In case of finite density simulation Introduction of chemical potential $\mu \Rightarrow \operatorname{detD}$ becomes a complex value, Importance sampling fails = statistical error becomes uncontrollable

> Sign problem / Complex action problem

Tensor Network Scheme

What is Tensor Network (TN) Scheme?
Theoretical and numerical methods for high precision analyses of many body problems with tensor network formalism

What is different from conventional methods?
Free from sign problem and complex action problem in Monte Carlo method Computational cost for L^{D} system size $\propto \mathrm{D} \times \log (\mathrm{L})$
Direct treatment of Grassmann numbers
Direct evaluation of partition function Z itself

Possible applications in particle physics:
Light quark dynamics in QED/QCD, Finite density QCD, Strong CP problem, Chiral gauge theories, Lattice SUSY etc.
Also many applications in condensed matter physics

Tensor Renormalization Group (TRG)

Tensor Network formulation
Details of model are specified in initial tensor The algorithmic procedure is independent of models

Of course, direct contraction is impossible for large N even with current fastest supercomputer
\Rightarrow How to evaluate the partition function?

Schematic View of TRG Algorithm

1. Singular Value Decomposition of local tensor T
2. Contraction of old tensor indices (coarse-graining)
3. Repeat the iteration

Quick Review of Singular Value Decomposition

Any $m \times n(m>n)$ real matrix A can be decomposed as $A=U \Sigma V^{\top}$
$\mathrm{U}: \mathrm{m} \times \mathrm{m}$ orthogonal matrix
V: $\mathrm{n} \times \mathrm{n}$ orthogonal matrix

$$
\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \cdots, \sigma_{n}\right) \quad\left(\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \geq \sigma_{4} \geq \cdots \geq \sigma_{n} \geq 0\right)
$$

$\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \cdots ", \sigma_{n}$: Singular Values (SV) of A (non-negative)

Representation with sum of rank=1 matrices using columns ($u_{1}, u_{2}, \cdots, u_{n}$) in U and $\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ in V

$$
\mathrm{A}=\sigma_{1} \mathrm{u}_{1} \mathrm{v}_{1}^{\top}+\sigma_{2} \mathrm{u}_{2} \mathrm{v}_{2}^{\top}+\cdots+\sigma_{\mathrm{n}} \mathrm{u}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}^{\top}
$$

Approximation of Matrix

Truncation of sum of rank 1 matrices

$$
\mathrm{A}=\sigma_{1} \mathrm{u}_{1} \mathrm{v}_{1}^{\top}+\sigma_{2} \mathrm{u}_{2} \mathrm{v}_{2}^{\top}+\cdots+\sigma_{k} \mathrm{u}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}}^{\top}+\cdots+\sigma_{\mathrm{n}} \mathrm{u}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}^{\top}
$$

$$
A_{k}=\sigma_{1} u_{1} v_{1}^{\top}+\sigma_{2} u_{2} v_{2}^{\top}+\cdots+\sigma_{k} u_{k} v_{k}^{\top}
$$

(k-rank approximation with largest k SVs)
Error of approximation:

$$
\begin{aligned}
& \left\|A-A_{k}\right\|_{F}=\left(\sigma_{k+1}^{2}+\sigma_{k+2}^{\left.2+\cdots+\sigma_{n}^{2}\right)^{1 / 2}}\right. \\
& \text { where, }\|A\|_{F}=\left(\operatorname{Tr}\left(A^{\top} A\right)\right)^{1 / 2}=\left(\sum_{i} \sum_{j} a_{i j}^{2}\right)^{1 / 2}
\end{aligned}
$$

Note: Image compression is a popular application

Image Compression with SVD

Image data with 200×320 pixel $\Rightarrow 200 \times 320$ real matrix
Application of SVD to the matrix

$$
A=\sigma_{1} u_{1} v_{1}^{\top}+\sigma_{2} u_{2} v_{2}^{\top}+\ldots+\sigma_{n} u_{n} v_{n}^{\top} \quad(n=200)
$$

Sample image (200×320 pixel)

Distribution of SVs

J. Demmel: Applied Numerical Linear Algebra, SIAM 1997

Approximation with SVD

J. Demmel: Applied Numerical Linear Algebra, SIAM 1997

Numerical test for 2D Ising Model

The key element in the algorithm is low-rank approximation by SVD

$$
T_{i, j, k, l} \simeq \sum_{m=1}^{\mathrm{D}_{\mathrm{cut}}} U_{(i, j), m} \sigma_{m} V_{m,(k, l)}
$$

Truncation error is controlled by the parameter $\mathrm{D}_{\text {cut }}$

Free energy on and off the transition point, lattice size $=2^{30 \sim 50}, D_{\text {cut }}=24$

Xie et al.
PRB86(2012)045139
Comparison with analytic results Relative error of free energy : $\leq 10^{-6}$

Study of 3D Ising Model

$$
\begin{aligned}
& \text { Xie et al. } \\
& \text { PRB86(2012)045139 }
\end{aligned}
$$

Higher-Order TRG (HOTRG): applicable to higher dimensional models
Computational cost $\propto\left(\mathrm{D}_{\mathrm{cut}}\right)^{11} \times \log (\mathrm{V})$

Comparison with Monte Carlo data

Method	T_{c}
HOTRG $(D=16$, from $U)$	4.511544
HOTRG $(D=16$, from $M)$	4.511546
Monte Carlo	4.511523
Monte Carlo 38	4.511525
Monte Carlo 39	4.511516
Monte Carlo 35	4.511528
Series expansion 40	4.511536
CTMRG 12	4.5788
TPVA 13	4.5704
CTMRG 14	4.5393
TPVA	
Algebraic variation 41	4.554

Results show good agreement with Monte Carlo data at high precision

Collaborators

Y. Kuramashi, Y. Yoshimura
S. Akiyama
Y. Nakamura, (Y. Shimizu)
S. Takeda, R. Sakai
D. Kadoh
U. Tsukuba

R-CCS

Kanazawa U.
N. Tsing-Hua U./ Keio U.

Application of TRGs to Particle Physics (1)

2D models

Ising model: Levin-Nave, PRL99(2007)120601
X-Y model: Meurice+, PRE89(2014)013308
CP(1) : Kawauchi-Takeda, PRD93(2016)114503
Real ϕ^{4} theory:
Shimizu, Mod.Phys.Lett.A27(2012)1250035,
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP1905(2019)184
Complex ϕ^{4} theory at finite density:
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, in preparation
$U(1)$ gauge theory $+\theta$:
YK-Yoshimura, arXiv:1911.06480
Schwinger, Schwinger+ + :
Shimizu-YK, PRD90(2014)014508, PRD90(2014)074503, PRD97(2018)034502
Gross-Neveu model at finite density:
Takeda-Yoshimura, PTEP2015(2015)043B01
N=1 Wess-Zumino model:
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP1803(2018)141

Application of TRGs to Particle Physics (2)

3D models
Ising: Xie+, PRB86(2012)045139
Potts model:Wan+, CPL31(2014)070503
Free Wilson fermion:
Sakai-Takeda-Yoshimura, PTEP2017(2017)063B07,
Yoshimura-YK-Nakamura-Takeda-Sakai, PRD97(2018)054511
Z_{2} gauge theory at finite temperature:
YK-Yoshimura, JHEP1908(2019)023

4D models
Ising: Akiyama-YK-Yamashita-Yoshimura, PRD100(2019)054510 weak first-order phase transition (not second-order phase transition)

Application to Finite Density System

2D complex ϕ^{4} theory at finite density
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, in preparation

How to treat continuous dof?
Complex action with finite chemical potential μ
Sign problem is really solved?

2D Complex ϕ^{4} Theory at Finite Density

Continuum action of 2D complex ϕ^{4} theory at finite μ

$$
S_{\text {cont }}=\int \mathrm{d}^{2} x\left\{\left|\partial_{\rho} \phi\right|^{2}+\left(m^{2}-\mu^{2}\right)|\phi|^{2}+\mu\left(\phi^{*} \partial_{2} \phi-\partial_{2} \phi^{*} \phi\right)+\lambda|\phi|^{4}\right\}
$$

Introduction of finite chemical potential \Rightarrow complex action

Lattice action

$$
\begin{gathered}
Z(\text { original })=\int \mathcal{D} \phi_{1} \mathcal{D} \phi_{2} \exp (-S) \\
S=\sum_{n}\left[\left(4+m^{2}\right)\left|\phi_{n}\right|^{2}+\lambda\left|\phi_{n}\right|^{4}-\sum_{\rho=1}^{2}\left(e^{\mu \delta_{\rho, 2}} \phi_{n}^{*} \phi_{n+\hat{\rho}}+e^{-\mu \delta_{\rho, 2}} \phi_{n+\hat{\rho}}^{*} \phi_{n}\right)\right]
\end{gathered}
$$

TN representation is constructed in the same way as for the real ϕ^{4} case

Bose condensation is expected to occur at sufficiently large μ

Tensor Network Representation

Kadoh+, in preparation
Boltzmann weight is expressed as

$$
\begin{gathered}
e^{-S}=\prod_{n \in \Gamma} \prod_{\nu=1}^{2} f_{\nu}\left(\phi_{n}, \phi_{n+\hat{\nu}}\right) \\
f_{\nu}\left(z, z^{\prime}\right) \\
=\exp \left\{-\frac{1}{4}\left(4+m^{2}\right)\left(|z|^{2}+\left|z^{\prime}\right|^{2}\right)-\frac{\lambda}{4}\left(|z|^{4}+\left|z^{\prime}\right|^{4}\right)+e^{\mu \delta_{\nu, 2} z^{*} z^{\prime}+e^{-\mu \delta_{\nu, 2}} z z^{\prime *}}\right\}
\end{gathered}
$$

\Rightarrow Need to discretize the continuous d. o. f.

Use of Gauss-Hermite quadrature

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{d} z_{1} \mathrm{~d} z_{2} e^{-z_{1}^{2}-z_{2}^{2}} h(z) \approx \sum_{\alpha, \beta=1}^{K} w_{\alpha} w_{\beta} h\left(\frac{y_{\alpha}+i y_{\beta}}{\sqrt{2}}\right)
$$

Discretized version of partition function

$$
Z \approx Z(K)=\sum_{\{\alpha, \beta\}} \prod_{n \in \Gamma} w_{\alpha_{n}} w_{\beta_{n}} \exp \left(y_{\alpha_{n}}^{2}+y_{\beta_{n}}^{2}\right) \prod_{\nu=1}^{2} f_{\nu}\left(\frac{y_{\alpha_{n}}+i y_{\beta_{n}}}{\sqrt{2}}, \frac{y_{\alpha_{n+\nu}}+i y_{\beta_{n+\nu}}}{\sqrt{2}}\right)
$$

Simple(st) Test Bed for Sign Problem

Mori-Kashiwa-Onishi, PTEP(2018)023B04
Previous study with path optimization method (Monte Carlo)

Average Phase Factor
$\left\langle e^{i \theta}\right\rangle=Z / Z_{\mathrm{pq}}$
$Z_{\mathrm{pq}}=\int \mathcal{D} \phi_{1} \mathcal{D} \phi_{2} \exp (-\operatorname{Re}(S))^{2}$

< ${ }^{\text {i }}{ }^{9}>$ becomes close to 1
Still, it seems difficult to perform
a MC simulation on L $\gtrsim 10$

The authors claim
"We show that the average phase factor is significantly enhanced after the optimization and then we can safely perform the hybrid Monte Carlo method."

Results for Z(original) with TRG

Kadoh+, in preparation
Parameters: $\mathrm{m}^{2}=0.01, \lambda=1, K=64, D_{\text {cut }}=64$
$\mathrm{V}=\mathrm{L} \times \mathrm{L}$ is changed from 4×4 to 256×256

Average phase factor

Sign problem: <eie> <<1

Bose condensation@ $\mu \gtrsim 0.95$

Effects of Phase

Kadoh+, in preparation
Parameters: $\mathrm{m}^{2}=0.01, \lambda=1, \mathrm{~K}=64, \mathrm{D}_{\text {cut }}=64$

$$
Z_{\mathrm{pq}}=\int \mathcal{D} \phi_{1} \mathcal{D} \phi_{2} \exp (-\operatorname{Re}(S))
$$

<n>w/ and w/o phase

Clear phase effect

No Silver Blaze phenomena in phase quenched case

Sign-Problem-Free Representation

Mathematical tools

- Polar coordinate

$$
\phi_{n}=\left(\phi_{n, 1}, \phi_{n, 2}\right) \rightarrow\left(r_{n} \cos \theta_{n}, r_{n} \sin \theta_{n}\right)
$$

- Character expansion

$$
\exp (x \cos z)=\sum_{k=-\infty}^{\infty} \mathrm{I}_{k}(x) \exp (i k z) \quad x \in R, z \in C
$$

Partition function can be expressed in a sign-problem-free form

$$
\begin{aligned}
& Z \text { (positive) } \\
&=\left(\prod_{n} \sum_{k_{n, 1}, k_{n, 2}=-\infty}^{\infty}\right.\left(\prod_{n} \int_{0}^{\infty} \mathrm{d} r_{n}\right) \prod_{n} 2 \pi r_{n} \prod_{\rho=1}^{2} e^{-\frac{1}{4}\left(4+m^{2}\right)\left(r_{n}^{2}+r_{n+\hat{\rho}}^{2}\right)-\frac{\lambda}{4}\left(r_{n}^{4}+r_{n+\hat{\rho}}^{4}\right)} \\
& \cdot \cdot \mathrm{I}_{k_{n, \rho}}\left(2 r_{n} r_{n+\hat{\rho}}\right) e^{k_{n, \rho} \mu \delta_{\rho, 2}} \delta_{\left(k_{n, 1}+k_{n, 2}-k_{n-\hat{1}, 1}-k_{n-\hat{2}, 2}\right), 0}
\end{aligned}
$$

TRG should work for Z(positive)

Consistency check btw the results for Z (original) and Z (positive)

Comparison btw Z(original) and Z(positive)

Kadoh+, in preparation

Parameters: $m^{2}=0.01, V=1024 \times 1024, \lambda=1, K=256, D_{\text {cut }}=64$

Good convergence
in character expansion

Good agreement in large μ \& V
\Rightarrow Free from sign problem

Summary

What we have achieved so far

- Application of TRG/HOTRG to 2D scalar, fermion and gauge theories
- Construction of TN rep. for scalar field theories
- Development of Grassmann TRG/HOTRG for fermion systems
- Successful analyses of 2D models $w /$ complex actions
- Analyses of higher dimensional models
- Phase transition of 3D Z_{2} gauge theory
- Phase transition of 4D Ising model

Next step

- Analysis of 3D, 4D models
- Nambu-Jona-Lasinio model at finite density
- Non-Abelian gauge theories
- Parallelization of ATRG (finished)

