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Introduction

Partition function of  lattice gauge theory

Expectation value of physical quantity

Monte Carlo works for detDe−S>0 with importance sampling

In case of finite density simulation
Introduction of chemical potential μ ⇒ detD becomes a complex value, 
Importance sampling fails = statistical error becomes uncontrollable

Z =
∫
DU det D({U}) e−Sg({U})

⟨O⟩ =
∫
DU O({U,D−1}) det D({U}) e−Sg({U})

Z =
∑

i,j,k,...
e−S(i,j,k,...) =

∑

i,j,k,...
TijklTimnoTjpqrTksuvTlwxy · · · .

ZQCD(T, µ) =
∫
DUe−Sg[U ] det D(µ; U)

⟨O⟩ =
⟨OeiNfθ⟩||
⟨eiNfθ⟩||

⟨O⟩ =
⟨Oeiθ⟩||
⟨eiθ⟩||

Z||(T, µ) =
∫
DUe−Sg[U ]| det D(µ; U)|

U = 1 − 1

3

⟨X4⟩
⟨X2⟩2

⟨ei4θ⟩|| =
ZQCD

Z||

L =
1

4
FµνFµν +

∑

q=u,d,s,c,b,t
q̄ [γµ(∂µ − igAµ) + mq] q

L = −1

4
FµνFµν +

∑

q=u,d,s,c,b,t
q̄ [iγµ(∂µ − igAµ) − mq] q

1

Z =
∫
DU det D({U}) e−Sg({U})

⟨O⟩ =
∫
DU O({U,D−1}) det D({U}) e−Sg({U})

Z =
∑

i,j,k,...
e−S(i,j,k,...) =

∑

i,j,k,...
TijklTimnoTjpqrTksuvTlwxy · · · .

ZQCD(T, µ) =
∫
DUe−Sg[U ] det D(µ; U)

⟨O⟩ =
⟨OeiNfθ⟩||
⟨eiNfθ⟩||

⟨O⟩ =
⟨Oeiθ⟩||
⟨eiθ⟩||

Z||(T, µ) =
∫
DUe−Sg[U ]| det D(µ; U)|

U = 1 − 1

3

⟨X4⟩
⟨X2⟩2

⟨ei4θ⟩|| =
ZQCD

Z||

L =
1

4
FµνFµν +

∑

q=u,d,s,c,b,t
q̄ [γµ(∂µ − igAµ) + mq] q

L = −1

4
FµνFµν +

∑

q=u,d,s,c,b,t
q̄ [iγµ(∂µ − igAµ) − mq] q

1

Sign problem / Complex action problem

Z =
∫
DU det D({U}) e−Sg({U})

⟨O⟩ =
∫
DU O({U,D−1}) det D({U}) e−Sg({U})

P =
1

Z
det D({U}) e−Sg({U})

Z =
∑

i,j,k,...
e−S(i,j,k,...) =

∑

i,j,k,...
TijklTimnoTjpqrTksuvTlwxy · · · .

ZQCD(T, µ) =
∫
DUe−Sg[U ] det D(µ; U)

⟨O⟩ =
⟨OeiNfθ⟩||
⟨eiNfθ⟩||

⟨O⟩ =
⟨Oeiθ⟩||
⟨eiθ⟩||

Z||(T, µ) =
∫
DUe−Sg[U ]| det D(µ; U)|

U = 1 − 1

3

⟨X4⟩
⟨X2⟩2

⟨ei4θ⟩|| =
ZQCD

Z||

L =
1

4
FµνFµν +

∑

q=u,d,s,c,b,t
q̄ [γµ(∂µ − igAµ) + mq] q

1

U: gauge field
D: Dirac matrix

ψDψ−



Tensor Network Scheme

What is Tensor Network (TN) Scheme?

Theoretical and numerical methods for high precision analyses
of many body problems with tensor network formalism   

What is different from conventional methods?

Free from sign problem and complex action problem in Monte Carlo method
Computational cost for LD system size ∝ D�log(L)
Direct treatment of Grassmann numbers
Direct evaluation of partition function Z itself

Possible applications in particle physics�
Light quark dynamics in QED/QCD, Finite density QCD,
Strong CP problem, Chiral gauge theories, Lattice SUSY etc.

Also many applications in condensed matter physics



Tensor Renormalization Group (TRG)

Explain the algorithm with 2D Ising model with N sites

Details of model are specified in initial tensor
The algorithmic procedure is independent of  models

Of course, direct contraction is impossible for large N even with current 
fastest supercomputer   
⇒ How to evaluate the partition function?

H =
∑

⟨i,j⟩
sisj si ± 1

Z =
∑

{Si}
exp (−βH)

=
2∑

i,j,k,l,···=1
Ti,m,n,lTs,t,i,jTr,j,k,qTk,l,o,p · · ·

Z =
∫
DU det D({U}) e−Sg({U})

⟨O⟩ =
∫
DU O({U,D−1}) det D({U}) e−Sg({U})

P =
1

Z
det D({U}) e−Sg({U})

Z =
∑

i,j,k,...
e−S(i,j,k,...) =

∑

i,j,k,...
TijklTimnoTjpqrTksuvTlwxy · · · .

ZQCD(T, µ) =
∫
DUe−Sg[U ] det D(µ; U)

⟨O⟩ =
⟨OeiNfθ⟩||
⟨eiNfθ⟩||

⟨O⟩ =
⟨Oeiθ⟩||
⟨eiθ⟩||

Z||(T, µ) =
∫
DUe−Sg[U ]| det D(µ; U)|

U = 1 − 1

3

⟨X4⟩
⟨X2⟩2

1

Hamiltonian

Partition Function

Tensor Network formulation

χ(L) =
1

L2

∂2 ln Z

∂(1/2κ)2

Z =
∫
DψDψ̄DU e−ψ̄D[U ]ψ−Sg[U ]

Ti,j,k,l ≃
Dcut∑

m=1
U(i,j),mσmVm,(k,l)

H =
∑

⟨i,j⟩
sisj si ± 1

Z =
∑

{si}
exp (−βH)

=
2∑

α,β,γ,δ,···=1
Tα,λ,ρ,δTσ,κ,α,βTµ,β,γ,τTγ,δ,ν,χ · · ·

Z =
∫
DU det D({U}) e−Sg({U})

⟨O⟩ =
∫
DU O({U,D−1}) det D({U}) e−Sg({U})

P =
1

Z
det D({U}) e−Sg({U})

Z =
∑

i,j,k,...
e−S(i,j,k,...) =

∑

i,j,k,...
TijklTimnoTjpqrTksuvTlwxy · · · .

ZQCD(T, µ) =
∫
DUe−Sg[U ] det D(µ; U)

⟨O⟩ =
⟨OeiNfθ⟩||
⟨eiNfθ⟩||

1

Levin-Nave 
PRL99(2007)120601
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Schematic View of TRG Algorithm
1. Singular Value Decomposition of local tensor T
2. Contraction of old tensor indices (coarse-graining)
3. Repeat the iteration  

Keep largest Dcut components
⇒ Reduction of freedom

#sites are reduced to half

Tensors 
w/ new indices
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Quick Review of Singular Value Decomposition

Any m"n (m>n) real matrix A can be decomposed as A=UΣVT

U: m"m orthogonal matrix

V: n"n orthogonal matrix

Σ=diag(σ1, σ2, σ3, σ4, $, σn)     (σ1≥σ2≥ σ3≥σ4≥$≥σn≥0)

σ1, σ2, σ3, σ4,%%%,σn: Singular Values (SV) of A (non-negative)
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Approximation of Matrix

Truncation of sum of rank 1 matrices
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Image Compression with SVD

9J. Demmel: Applied Numerical Linear Algebra, SIAM 1997 

Image data with 200x320 pixel ⇒ 200x320 real matrix

Application of SVD to the matrix

A=σ1u1v1
T+σ2u2v2

T+…+σnunvn
T (n=200)

Sample image (200x320 pixel) Distribution of SVs



Approximation with SVD

Ak=σ1u1v1
T+σ2u2v2

T+…+σkukvk
T (k≪200)

J. Demmel: Applied Numerical Linear Algebra, SIAM 1997 



Numerical test for 2D Ising Model

The key element in the algorithm is low-rank approximation by SVD

Truncation error is controlled by the parameter Dcut

Free energy on and off the transition point, lattice size=230�50, Dcut=24

Xie et al. 
PRB86(2012)045139

Comparison with analytic results
Relative error of free energy�≤10−6

XIE, CHEN, QIN, ZHU, YANG, AND XIANG PHYSICAL REVIEW B 86, 045139 (2012)

FIG. 4. (Color online) Comparison of the relative errors of free
energy with respect to the exact results for the 2D Ising model
obtained by various methods with D = 24. The critical temperature
Tc = 2/ ln(1 +

√
2).

is already less than 10−7 even at the critical temperature,
much more accurate than the TRG result.7,8 The HOSRG also
performs better than the SRG. But the difference in the results
obtained by these two methods is relatively small around the
critical point. The HOTRG is less accurate than the two SRG
methods, but it is computationally economic. The difference
between TRG/SRG and HOTRG/HOSRG lies mainly in the
basis truncation scheme. The former is based on the SVD,
while the latter is based on the HOSVD. The above comparison
indicates that the HOSVD scheme works better.

III. THREE-DIMENSIONAL SYSTEMS

The above HOTRG and HOSRG methods can be readily
extended to three dimensions. This is an advantage of the
coarse-graining scheme proposed here. On the cubic lattice, a
full cycle of lattice contraction needs to be done in three steps,
along the x axis, y axis, and z axis, respectively. At each step,
two neighboring tensors will be combined to form a single
coarse-grained tensor and the lattice size is reduced by a factor
of 2.

As an example, Fig. 5 shows how the tensors are contracted
along the z axis. The HOSVD of the coarse-grained local
tensor [Fig. 5(b)] can be similarly done as for the 2D case. But
the local tensor now has six bond indices and a HOSVD for a
higher-order tensor should be done. Moreover, the basis spaces
for both the x-axis and y-axis bonds need to be renormalized.
Thus we should determine from the core tensor and the unitary
matrices of M (n) not only the transformation matrix for the
x-direction bonds U (n), but also the transformation matrix
for the y-direction bonds V (n). After that the dimensions for
both x-axis and y-axis bonds are truncated and the local
tensor is updated using U (n) and V (n). The contraction and
renormalization of tensors along the other two directions can
be similarly done. This three-step iteration can then be repeated
until the results are converged.

After the above HOTRG iteration, one can also do a
backward iteration to evaluate the environment tensors and
carry out the HOSRG calculation in three dimensions. A

(a)
x'1
x'2

y'1

i

T(n)

T(n)

x1

x2
y2

y1 y'2

z

z'

z

z'

x'
y'

x
y T(n+1)

T(n)
(b)

M(n)

T(n+1)

x x'

y'

y

z

z'

U(n) U(n)
V(n)

V(n)
M(n)

FIG. 5. (Color online) (a) A HOTRG coarse-graining step along
the z axis on the cubic lattice. (b) Steps of contraction and
renormalization of two local tensors.

graphical representation for iteratively determining the envi-
ronment tensor in this backward iteration is shown in Fig. 6.
A series of forward-backward iterations is then performed
to take into account the second renormalization effect of the
environment to the coarse-grained tensors. In the subsequent
forward iterations, we evaluate and diagonalize the bond
density matrix (see Fig. 7) and update the coarse-grained
tensors. The environment tensors are evaluated again in the
backward iteration.

In the 3D calculation, the computational time scales with
D11 and the memory scales with D6. This cost in the
computational resource is significantly smaller than in other
3D numerical RG methods.11–17,19 We have studied the 3D
Ising model using the HOTRG for D up to 16.

The temperature dependence of the internal energy U and
the specific heat C for the 3D Ising model obtained by the
HOTRG with D = 14 is shown in Fig. 8 and compared with

l r

f

b

u

d

i j

m

n k
U
(n+1)

E
(n+1)

E
(n)

T
(n)

V
(n+1)

FIG. 6. (Color online) Graphical representation for the deter-
mination of the environment tensor E

(n)
mnjiuk from E

(n+1)
lrf bud in three

dimensions.
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Ti,j,k,l ≃
Dcut∑

m=1
U(i,j),mσmVm,(k,l)

H =
∑

⟨i,j⟩
sisj si ± 1

Z =
∑

{Si}
exp (−βH)

=
2∑

i,j,k,l,···=1
Ti,m,n,lTs,t,i,jTr,j,k,qTk,l,o,p · · ·

Z =
∫
DU det D({U}) e−Sg({U})

⟨O⟩ =
∫
DU O({U,D−1}) det D({U}) e−Sg({U})

P =
1

Z
det D({U}) e−Sg({U})

Z =
∑

i,j,k,...
e−S(i,j,k,...) =

∑

i,j,k,...
TijklTimnoTjpqrTksuvTlwxy · · · .

ZQCD(T, µ) =
∫
DUe−Sg[U ] det D(µ; U)

⟨O⟩ =
⟨OeiNfθ⟩||
⟨eiNfθ⟩||

⟨O⟩ =
⟨Oeiθ⟩||
⟨eiθ⟩||

Z||(T, µ) =
∫
DUe−Sg[U ]| det D(µ; U)|

1



Study of 3D Ising Model
Xie et al. 
PRB86(2012)045139

XIE, CHEN, QIN, ZHU, YANG, AND XIANG PHYSICAL REVIEW B 86, 045139 (2012)

FIG. 10. (Color online) Temperature dependence of the magne-
tization for the 3D Ising model (D = 14). The Monte Carlo result is
from Ref. 35. (Inset) Logarithmic plot of the magnetization around
the critical point. The slope of the fitting curve gives the critical
exponent of the magnetization, γ = 0.3295.

D. It becomes converged only when D ! 13, indicating the
importance of keeping a large D in the 3D TRG calculation.
The error in Tc, estimated from the difference between the
values of Tc for D = 15 and D = 16, is also less than 10−6. A
comparison of the values of Tc obtained by different methods
is shown in Table II. Our results agree with the Monte Carlo
data.37–39

The above discussion indicates that the HOTRG works
very well in 3D. The accuracy of the results can be further
improved by applying the HOSRG. However, the HOSRG
calculation costs much more CPU time. A thorough study
with the HOSRG on the 3D Ising model is still in progress
and the results will be published separately.

IV. GROUND STATE AND THERMODYNAMICS OF 2D
QUANTUM LATTICE MODELS

A d-dimensional quantum lattice model is equivalent
to a (d + 1)-dimensional classical model, the HOTRG and

FIG. 11. (Color online) The critical temperature Tc as a function
of the bond dimension D for the 3D Ising model obtained from the
internal energy (U ) and magnetization (M), respectively.

TABLE II. Comparison of the critical point Tc for the 3D Ising
model obtained by different methods.

Method Tc

HOTRG (D = 16, from U) 4.511544
HOTRG (D = 16, from M) 4.511546
Monte Carlo37 4.511523
Monte Carlo38 4.511525
Monte Carlo39 4.511516
Monte Carlo35 4.511528
Series expansion40 4.511536
CTMRG12 4.5788
TPVA13 4.5704
CTMRG14 4.5393
TPVA16 4.554
Algebraic variation41 4.547

HOSRG methods above introduced can be also extended
to study the ground-state and thermodynamic properties of
d-dimensional quantum lattice models. For one-dimensional
quantum lattice models, there are already many mature meth-
ods for studying the ground state as well as the thermodynamic
properties. For example, the ground state can be studied by
the DMRG24 and the thermodynamics can be studied by the
quantum transfer matrix renormalization group (TMRG).44,45

Here we will only discuss how to apply the HOTRG/HOSRG
to a 2D quantum lattice model.

As an example, we will take the 2D quantum Ising model
with a transverse field to show how these methods work. The
Hamiltonian of this model is defined by

H = −
∑

⟨ij⟩
σ i

zσ
j
z − h

∑

i

σ i
x . (19)

We start by representing the partition function of this model
as a tensor-network model in the 2 + 1 dimensions. By using
the Trotter-Suzuki decomposition formula, we can express the
partition function as19

Z = Tre−βH ≈ Tr[e−τHze−τHx ]L + O(τ 2), (20)

where

Hz = −
∑

⟨ij⟩
σ i

zσ
j
z , (21)

Hx = −h
∑

i

σ i
x . (22)

β = Lτ is the inverse temperature and τ is a small Trotter
parameter. This partition function can be also expressed as a
product of evolution matrix V ,

Z = TrV L, (23)

where

V = e−τHx/2e−τHze−τHx/2 (24)

is the evolution operator between two neighboring Trotter
layers. To insert the complete basis set between any two of
the exponential terms on the right-hand side of Eq. (20), it is
straightforward to show that V can be expressed as a product of
local tensors. From this, we can express the partition function

045139-6

Results show good agreement with Monte Carlo data at high precision

Higher-Order TRG (HOTRG): applicable to higher dimensional models

Computational cost ∝ (Dcut)11�log(V)

XIE, CHEN, QIN, ZHU, YANG, AND XIANG PHYSICAL REVIEW B 86, 045139 (2012)
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from Ref. 35. (Inset) Logarithmic plot of the magnetization around
the critical point. The slope of the fitting curve gives the critical
exponent of the magnetization, γ = 0.3295.

D. It becomes converged only when D ! 13, indicating the
importance of keeping a large D in the 3D TRG calculation.
The error in Tc, estimated from the difference between the
values of Tc for D = 15 and D = 16, is also less than 10−6. A
comparison of the values of Tc obtained by different methods
is shown in Table II. Our results agree with the Monte Carlo
data.37–39

The above discussion indicates that the HOTRG works
very well in 3D. The accuracy of the results can be further
improved by applying the HOSRG. However, the HOSRG
calculation costs much more CPU time. A thorough study
with the HOSRG on the 3D Ising model is still in progress
and the results will be published separately.
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TABLE II. Comparison of the critical point Tc for the 3D Ising
model obtained by different methods.

Method Tc

HOTRG (D = 16, from U) 4.511544
HOTRG (D = 16, from M) 4.511546
Monte Carlo37 4.511523
Monte Carlo38 4.511525
Monte Carlo39 4.511516
Monte Carlo35 4.511528
Series expansion40 4.511536
CTMRG12 4.5788
TPVA13 4.5704
CTMRG14 4.5393
TPVA16 4.554
Algebraic variation41 4.547

HOSRG methods above introduced can be also extended
to study the ground-state and thermodynamic properties of
d-dimensional quantum lattice models. For one-dimensional
quantum lattice models, there are already many mature meth-
ods for studying the ground state as well as the thermodynamic
properties. For example, the ground state can be studied by
the DMRG24 and the thermodynamics can be studied by the
quantum transfer matrix renormalization group (TMRG).44,45

Here we will only discuss how to apply the HOTRG/HOSRG
to a 2D quantum lattice model.

As an example, we will take the 2D quantum Ising model
with a transverse field to show how these methods work. The
Hamiltonian of this model is defined by

H = −
∑

⟨ij⟩
σ i

zσ
j
z − h

∑

i

σ i
x . (19)

We start by representing the partition function of this model
as a tensor-network model in the 2 + 1 dimensions. By using
the Trotter-Suzuki decomposition formula, we can express the
partition function as19

Z = Tre−βH ≈ Tr[e−τHze−τHx ]L + O(τ 2), (20)

where

Hz = −
∑

⟨ij⟩
σ i

zσ
j
z , (21)

Hx = −h
∑

i

σ i
x . (22)

β = Lτ is the inverse temperature and τ is a small Trotter
parameter. This partition function can be also expressed as a
product of evolution matrix V ,

Z = TrV L, (23)

where

V = e−τHx/2e−τHze−τHx/2 (24)

is the evolution operator between two neighboring Trotter
layers. To insert the complete basis set between any two of
the exponential terms on the right-hand side of Eq. (20), it is
straightforward to show that V can be expressed as a product of
local tensors. From this, we can express the partition function

045139-6

Dcut dependence of Tc Comparison with Monte Carlo data

1%
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Application of TRGs to Particle Physics (1)
2D models

Ising model�Levin-Nave, PRL99(2007)120601
X-Y model�Meurice+, PRE89(2014)013308
CP(1)�Kawauchi-Takeda, PRD93(2016)114503
Real φ4 theory�

Shimizu, Mod.Phys.Lett.A27(2012)1250035,
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP1905(2019)184

Complex φ4 theory at finite density�
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, in preparation

U(1) gauge theory+θ�
YK-Yoshimura, arXiv:1911.06480

Schwinger, Schwinger+θ�
Shimizu-YK, PRD90(2014)014508, PRD90(2014)074503,

PRD97(2018)034502 
Gross-Neveu model at finite density�

Takeda-Yoshimura, PTEP2015(2015)043B01
N=1 Wess-Zumino model�

Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP1803(2018)141
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Application of TRGs to Particle Physics (2)

3D models
Ising�Xie+, PRB86(2012)045139
Potts model�Wan+, CPL31(2014)070503
Free Wilson fermion�

Sakai-Takeda-Yoshimura, PTEP2017(2017)063B07, 
Yoshimura-YK-Nakamura-Takeda-Sakai, PRD97(2018)054511

Z2 gauge theory at finite temperature�
YK-Yoshimura, JHEP1908(2019)023

4D models
Ising�Akiyama-YK-Yamashita-Yoshimura, PRD100(2019)054510

weak first-order phase transition (not second-order phase transition)



Application to Finite Density System

2D complex φ4 theory at finite density
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, in preparation

How to treat continuous dof? 
Complex action with finite chemical potential μ
Sign problem is really solved?



2D Complex φ4 Theory at Finite Density

Continuum action of 2D complex φ4 theory at finite μ

Introduction of finite chemical potential ⇒ complex action

Lattice action 

TN representation is constructed in the same way as for the real φ4 case

Bose condensation is expected to occur at sufficiently large μ

Kadoh+, in preparation

Scont =
∫

d2x
{
|∂ρφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂2φ − ∂2φ

∗φ) + λ|φ|4
}

Z =
∫
Dφ1Dφ2 exp(−S)

S =
∑

n

⎡

⎢⎣(4 + m2) + |φn|2 + λ|φn|4 −
2∑

ρ=1

(
eµδρ,2φ∗

nφn+ρ̂ + e−µδρ,2φ∗
n+ρ̂φn

)
⎤

⎥⎦

φn = (φn,1,φn,2) → (rn cos θn, rn sin θn)

exp(x cos z) =
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Tensor Network Representation
Kadoh+, in preparation

Boltzmann weight is expressed as

⇒ Need to discretize the continuous d. o. f.

Use of Gauss-Hermite quadrature

Discretized version of partition function 

where the original complex field is represented in terms of two real fields φn = 1√
2
(φn,1 + iφn,2)

and the corresponding integral measure is given by Dφ1Dφ2 ≡
∏

n∈Γ dφn,1dφn,2. Although

a naive Monte Carlo method cannot be applied due to the complex action, it is in fact

irrelevant for the tensor network method whether the Boltzman weight is complex or not.

In order to apply the tensor network method, first of all, one has to derive a tensor

network representation of the partition function and the expectation value of the fields if

nessesary. In the following we shall derive it especially for the partition function according

to Refs. [4, 5]. 1 The first important point to note is that the lattice action contains the

nearest-neighbor interaction. Thus the Boltzmann weight can be expressed as a product of

local factors:

e−S =
∏

n∈Γ

2∏

ν=1

fν (φn,φn+ν̂) , (4)

where the local factor is explicitly given by

fν (z, z
′)

= exp

{
−1

4

(
4 +m2

) (
|z|2 + |z′|2

)
− λ

4

(
|z|4 + |z′|4

)
+ eµδν,2z∗z′ + e−µδν,2zz′∗

}
. (5)

The next step is to derive the discrete structure labeled by an integer which is a candidate

of a tensor index. For that purpose we use the Gauss–Hermite quadrature rule as in refs. [4,

5]. For one-variable integration, the quadrature provides a discretization as follows. For a

proper function g(x),

∫ ∞

−∞
dxe−x2

g (x) ≈
K∑

α=1

wαg (yα) (6)

where yα and wα are the α-th root of the K-th Hermite polynomial and the corresponding

weight, respectively. Here K dictates the order of approximation and for large K the pre-

cision of integration is expected to be better. Even in two-variable case (z = 1√
2
(z1 + iz2),

z1, z2 ∈ R), one can simply apply the quadrature rule

∫ ∞

−∞

∫ ∞

−∞
dz1dz2 e−z21−z22h (z) ≈

K∑

α,β=1

wαwβh

(
yα + iyβ√

2

)
, (7)

1 The expectation value of the fields can be treated in a similar way.
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3

as long as the integrand h is a proper function. After applying the replacement for each

complex field on a site, the partition function is now expressed in a discrete form

Z ≈ Z (K) =
∑

{α,β}

∏

n∈Γ

wαnwβn exp
(
y2αn

+ y2βn

) 2∏

ν=1

fν

(
yαn + iyβn√

2
,
yαn+ν̂

+ iyβn+ν̂√
2

)
, (8)

where we have used an abbreviation for the summation

∑

{α,β}

... =
∏

n∈Γ

K∑

αn,βn=1

.... (9)

As a result of the discretization, the local Boltzmann factor for each ν can be regarded

as a K2 ×K2 complex valued matrix

M [ν]
(αβ)(α′β′) ≡ fν

(
yα + iyβ√

2
,
yα′ + iyβ′√

2

)
. (10)

Then the singular value decomposition is applied to the matrix numerically

M [ν]
(αβ)(α′β′) =

K2∑

k=1

U [ν]
(αβ)kσ

[ν]
k V [ν]†

k(α′β′), (11)

where σ[ν]
k is k-th singular value 2, and U [ν] and V [ν]† are unitary matrices. Finally the

discrete form of the partition function can be expressed as a tensor network

Z (K) =
∑

{x,t}

∏

n∈Γ

T (K)xntnxn−1̂tn−2̂
, (12)

where
∑

{x,t} denotes
∏

n∈Γ
∑K2

xn,tn=1 and the tensor is explicitly given by

T (K)ijkl =
√
σ[1]
i σ[2]

j σ[1]
k σ[2]

l

K∑

α,β=1

wαwβ exp
(
y2α + y2β

)
U [1]
(αβ)iU

[2]
(αβ)jV

[1]†
k(αβ)V

[2]†
l(αβ). (13)

To achieve a better precision and a reasonable computational complexity, we truncate

the range of the summation of tensor indices in eq.(12). The truncation is valid when σ[ν]
k in

eq.(11) has a sharp hierarchy structure. After truncating the range from K2 to D (≤ K2),

Z (K) is approximated to

Z (K) ≈
(
∏

n∈Γ

D∑

xn,tn=1

)
∏

n∈Γ

T (K)xntnxn−1̂tn−2̂
, (14)

where note that the elements of the tensor is the same as the original one.

2 We assume that the singular values are ordered in the descending order.
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Simple(st) Test Bed for Sign Problem 

Previous study with path optimization method (Monte Carlo)

The authors claim
”We show that the average phase factor is significantly enhanced after the 

optimization and then we can safely perform the hybrid Monte Carlo method.”

Mori-Kashiwa-Onishi, PTEP(2018)023B04
PTEP 2018, 023B04 Y. Mori et al.
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Fig. 2. The top left and top right panels show the real part of the average phase factor without and with the
optimization as a function of µ. The bottom panel shows the imaginary part of the average phase factor with
the optimization. Circles, squares, and crosses are results for L = 4, 6, and 8, respectively.
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Fig. 3. The expectation value of the number density in the Monte Carlo calculations (solid lines with symbols)
and in the mean field approximation (dashed line). The shaded area shows the expectation value without the
path optimization method at L = 8.

µ, and it becomes almost zero at µ > 1 on a larger lattice, L = 8. With the path optimization,
Re ⟨eiθ ⟩pq takes larger values than that without optimization. In particular, results with L = 4 show
Re ⟨eiθ ⟩pq ∼ 1 in the range 0 ≤ µ ≤ 2. For L = 8, Re ⟨eiθ ⟩pq takes smaller values than those
on the L = 4 and L = 6 lattices, and takes a minimum value of ∼ 0.4 at µ ∼ 1.4. The minimum
value is well above zero, and we can safely obtain the expectation values of observables. The bottom
panel of Fig. 2 shows the µ-dependence of Im ⟨eiθ ⟩pq with the optimization. We find that Im ⟨eiθ ⟩pq

takes smaller values than the real part. We also note that |Im ⟨eiθ ⟩pq| becomes smaller after the path
optimization.

Since the average phase factor is large enough with path optimization, it becomes possible to
discuss observables such as the number density. The left (right) panel of Fig. 3 shows the expectation
value of the real (imaginary) part of the number density as a function of µ. We can see that Re ⟨n⟩
starts to grow rapidly around µ = 1. By comparison, Im ⟨n⟩ is sufficiently smaller than Re ⟨n⟩. This
tendency of Re ⟨n⟩ is consistent with the 4D case; see Refs. [9,28–30] and references therein. The
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Average Phase Factor

⟨eiθ⟩ = Z/Zpq

Sq
(
{U, ψ̄,ψ}

)
=

∑

m,n
ψ̄(m)D({U})ψ(n)

L =
1

4
FµνFµν +

∑

q=u,d,s,c,b,t
q̄ [γµ(∂µ − igAµ) + mq] q

L = −1

4
FµνFµν +

∑

q=u,d,s,c,b,t
q̄ [iγµ(∂µ − igAµ) − mq] q

⟨O[Uµ, q, q̄]⟩ =
1

Z

∫ ∏

n,µ
dUµdqdq̄ O[Uµ, q, q̄] exp

{

−∑

n
Llatt[Uµ, q, q̄]

}

⟨Ō[Uµ]⟩ =
1

Z

∫ ∏

n,µ
dUµ Ō[Uµ] exp

{
−Seff

latt[Uµ]
}

⟨O[Uρ]⟩ =
1

Z

∫ ∏

n,ρ
dUρ O[Uρ] exp {−S0[Uρ] + iθµ[Uρ]}

=
⟨O[Uρ] eiθµ[Uρ]⟩0

⟨eiθµ[Uρ]⟩0
2

Scont =
∫

d2x
{
|∂ρφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂2φ − ∂2φ

∗φ) + λ|φ|4
}

Z =
∫
Dφ1Dφ2 exp(−S)

S =
∑

n

⎡

⎢⎣(4 + m2) + |φn|2 + λ|φn|4 −
2∑

ρ=1

(
eµδρ,2φ∗

nφn+ρ̂ + e−µδρ,2φ∗
n+ρ̂φn

)
⎤

⎥⎦

φn = (φn,1,φn,2) → (rn cos θn, rn sin θn)

exp(x cos z) =
∞∑

k=−∞
Ik(x) exp(ikz) x ∈ R, z ∈ C

Z =

⎛

⎜⎝
∏

n

∞∑

kn,1,kn,2=−∞

⎞

⎟⎠

(
∏

n

∫ ∞
0

drn

)
∏

n
2πrn

2∏

ρ=1
e−

1
4(4+m2)(r2

n+r2
n+ρ̂)−

λ
4 (r4

n+r4
n+ρ̂)

·Ikn,ρ(2rnrn+ρ̂)e
kn,ρµδρ,2δ(kn,1+kn,2−kn−1̂,1−kn−2̂,2),0

Zpq =
∫
Dφ1Dφ2 exp(−Re(S))

1

<eiθ> becomes close to 1
Still, it seems difficult to perform 
a MC simulation on L≳10

m2=1, λ=1



Results for Z(original) with TRG

Parameters: m2=0.01, λ=1, K=64, Dcut=64
V=L�L is changed from 4�4 to 256�256

Kadoh+, in preparation
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FIG. 1. The average of phase factor (Re[Z/Zpq]) as a function of µ. The parameters are m2 = 0.01,

λ = 1, K = 64 and D = 64. The lattice volume is varied from 23× 23 to 28× 28. The sign problem

is harder for larger µ and larger volume.

B. Silver Blaze phenomenon

As a typical phenomenon in finite density systems, let us see the Silver Blaze phenomenon

which is expected to be elucidated in the thermodynamics limit at very low temperature.

In fact, a cost of the tensor network method scales with the logarithm of the lattice volume,

thus the method is suitable for observing the phenomenon clearly.

First, let us see the particle number density defined as

n =
1

NsNt

∂ lnZ

∂µ
. (18)

The differentiation in terms of µ in the above equation is estimated by numerical difference.

The results for n as a function of µ are shown in fig. 2 for several space-time volumes. We

clearly observe the Silver Blaze phenomenon; the density does not react in the small µ region,

and it has an onset at finite µ. In particular, the cusp structure around µ ≈ 0.94 tends to

be sharper for larger volume. For comparison, in fig. 3 we show the phase quenched version

of the particle number density on the lattice V = (1024)2. By contrast to the full-version,

6

the phase quenched one exhibits the continuous behavior. To see the difference in more

detail, we show its volume dependent in fig. 4. In the infinite volume limit the full-version

converges to zero while the phase quenched one takes a finite value.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

n

µ

V=22×22

V=24×24

V=26×26

V=28×28

FIG. 2. The particle number density (n) as a function of µ. The lattice volume is varied from

22 × 22 to 28 × 28. The other parameters (m, λ, K and D) are the same as those of fig. 1.

We also calculate the field expectation value ⟨|φ|2⟩ using the impurity tensor method [5].

Figure 5 shows ⟨|φ|2⟩ as a function of µ with the same parameters as in those of fig. 2. As

in the case of the density, there is no µ-dependence in µ ! 0.94 while a sharp rise is seen

around µ ≈ 0.94.

In order to study a stability of the Silver Blaze phenomenon against changing the physical

parameters (m and λ), we also compute the density with (m2,λ) = (0.01, 0.1) and (1, 0.1)

as shown in fig. 9. Note that, for smaller m or λ, the exponential damping in the Boltzmann

weight is weaker. Even in such cases, we clearly observe that the Silver Blaze phenomenon

persists.
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FIG. 3. A comparison of the particle number density between the full theory and the phase

quenched version for m2 = 0.01, λ = 1, K = 64, D = 64 and V = 1024 × 1024. The full

theory result clearly shows the Silver Blaze phenomenon while the phase quenched case shows the

continuous behavior.

C. Comparison with another tensor network representation

So far we have used the tensor network representation using the Gauss-Hermite quadra-

ture but one may use another representation, for instance, the dual formulation given in

Appendix A. It is known that the dual formulation of the complex scalar theory has no

sign problem. This formulation is also useful for tensor network method. For example, the

number of integration variables for the dual formulation is half of that of the conventional

one using the Gauss-Hermite quadrature. Thus, the cost of making the initial tensor for the

dual formulation is basically cheaper than that using the Gauss-Hermite quadrature. See

Appendix A for the details.

We numerically compare the two representations in terms of ⟨|φ2|⟩ as shown in fig. 10. As

a result they agree with each other well and it is hard to see the difference at the resolution.

Thus we see that it is irrelevant for the tensor network method whether the representation

of the partition function is inherent in the sign problem or not.
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FIG. 4. The thermodynamic limit of the particle number density at µ = 0.904 with m2 = 0.01,

λ = 1, K = 64 and D = 64. The density for the phase quenched case takes a finite value while for

the full theory it converges to zero in the limit.

IV. SUMMARY AND OUTLOOK

In this paper we have derived a tensor network representation for the complex scalar field

theory using the Gauss-Hermite quadrature rule which simply discretizes the continuous

scalar fields. By using the representation and the TRG, we numerically evaluate the average

of the phase factor, the particle number density and ⟨|φ|2⟩, and furthermore we investigate

the Silver Blaze phenomenon. As a result, the Silver Blaze phenomenon is clearly observed

especially on the extremely large volume V = (1024)2 which is essentially at the zero tem-

perature and in the thermodynamic limit, and moreover the effectiveness of tensor network

method has been confirmed in the severe sign problem region for the Monte Carlo method.

We also examine an another tensor network representation using the character expansion

which is nothing but the dual formulation of the model and can avoid the sign problem in

Monte Carlo simulations. Then, our numerical investigations show that two representations

have no a visible difference at the resolution, though the cost of making the initial tensor

for the character expansion is cheaper than that of using the conventional Gauss-Hermite
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V=L�L=1024�1024
μ=0.904

Scont =
∫

d2x
{
|∂ρφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂2φ − ∂2φ

∗φ) + λ|φ|4
}

Z =
∫
Dφ1Dφ2 exp(−S)

S =
∑

n

⎡

⎢⎣(4 + m2) + |φn|2 + λ|φn|4 −
2∑

ρ=1

(
eµδρ,2φ∗

nφn+ρ̂ + e−µδρ,2φ∗
n+ρ̂φn

)
⎤

⎥⎦

φn = (φn,1,φn,2) → (rn cos θn, rn sin θn)

exp(x cos z) =
∞∑

k=−∞
Ik(x) exp(ikz) x ∈ R, z ∈ C

Z =

⎛

⎜⎝
∏

n

∞∑

kn,1,kn,2=−∞

⎞

⎟⎠

(
∏

n

∫ ∞
0

drn

)
∏

n
2πrn

2∏

ρ=1
e−

1
4(4+m2)(r2

n+r2
n+ρ̂)−

λ
4 (r4

n+r4
n+ρ̂)

·Ikn,ρ(2rnrn+ρ̂)e
kn,ρµδρ,2δ(kn,1+kn,2−kn−1̂,1−kn−2̂,2),0

Zpq =
∫
Dφ1Dφ2 exp(−Re(S))

1

4 ≤ L ≤ 1024
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FIG. 10. ⟨|φ|2⟩ as a function of µ at D = 64 on the lattice V = 1024×1024. For the tensor network

(TN) using the Gauss-Hermite quadrature, the truncation order is K = 64. For the case of the

character expansion, the truncation order of the expansion is set to 128 and that for the radial

integration is K = 256.

complex field: (φn,1,φn,2) → (rn cos θn, rn sin θn) and the character expansion:

ex cos z =
∞∑

l=−∞

Il (x) e
ilz for x ∈ R, z ∈ C, (A1)

where Il is the l-th modified Bessel function of the first kind. By using them, one can obtain

the dual formulation of the partition function

Z =

⎛

⎝
∏

n∈Γ

∞∑

ln,1,ln,2=−∞

⎞

⎠
(
∏

n∈Γ

∫ ∞

0

drn

)
∏

n∈Γ

2πrn

2∏

ν=1

e−
1
4(4+m2)(r2n+r2n+ν̂)−λ

4 (r4n+r4n+ν̂)

Iln,ν (2rnrn+ν̂) e
In,νµδν,2δ(ln,1+ln,2−ln−1̂,1−ln−2̂,2),0

,

(A2)

where the angle variables have been already integrated and there are constraints for ls. Now

all entries are real and non-negative thus there is no sign problem in this formulation. Note

that the range for the summation of l has to be truncated at some order in the actual

computations and we set the truncation order 128 in the analysis here.
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