### ATLAS実験の最近の物理結果から

#### 佐藤構二 宇宙史センター構成員会議 2019年11月18日(月)

1

#### LHC実験 スイス・アルプス山脈 世界最高エネルギーでの加速器実験 √5 ≤14 TeVでの場子・陽子衝突 2010年 LHC加速器稼動開始。 2011-12年 物理Run開始。Ecm=7 – 8 TeV, 25 fb 'のデータ取得。 2012年 LHC加速器のATLAS/CMS両実験がヒッグス粒子を発見。 2015-18年 エネルギーをEcm=13 TeVIこ上げてRun 2実験。 2021-2023年 Run 3。Ecm=14 TeV, ~300 fb 'のデータセットュネーブ市街 2026-203X年 HL-LHC実験。~3000 fb 'の大データセット。







円周27km 陽子を最大7 TeVまで加速して正面衝

#### LHCの長期将来計画



### Accelerator LS2 Upgrades

2019-2020: Long Shutdown (LS2) preparing for Run 3 in 2021-٠ 2023

## Key Plans for LS2 Accelerator Upgrades https://home.cern/news/news/accelerators/key-plans-next-two-years-lhc

- Preparation for HL-LHC, as well as Run ۲ 3 and maintenance.
- More intense, concentrated beam, ٠ with new Linac accelerating Hinstead of proton.
  - Replace Linac 2 with new Linac 4.
  - Upgrade Booster injection. ٠
  - New RF system in SPS.
- Bring beam energy up to 7 TeV. •
  - Consolidate the diodes providing • current to dipole magnets
- ~20 magnet replacements, install new lifts, ...





 ヒッグス粒子、標準理論、トップクォーク、Bメソン、超対称性、新物理探索、重イ オン衝突…

### ATLAS LS2 Upgrades



New Muon Small Wheel

For L1 Trigger

内層に新しいトリガーチェンバーを入れる。



FTK Upgrade – new track trigger in L2 trigger. TDAQ Upgrade

Nucl.Instrum.Meth. A824 (2016) 374-378

#### Luminosities in Run 2



| Run 1 | $E_{CM}(\text{TeV})$ | integ lumi<br>[fb <sup>-1</sup> ] |
|-------|----------------------|-----------------------------------|
| 2011  | 7                    | 5                                 |
| 2012  | 8                    | 21                                |

 $E_{CM} = 13 \, (\text{TeV})$ 

| Run 2 | Peak lumi<br>E34 cm <sup>-2</sup> s <sup>-1</sup> | Days<br>pp physics | Recorded integ lumi<br>[fb <sup>-1</sup> ] | Good for Physics [fb <sup>-1</sup> ]<br>累積 |
|-------|---------------------------------------------------|--------------------|--------------------------------------------|--------------------------------------------|
| 2015  | 0.5                                               | 56                 | 3.9                                        | 3.2                                        |
| 2016  | 1.4                                               | 122                | 36.0                                       | 36                                         |
| 2017  | 1.9                                               | 150                | 46.9                                       | 80                                         |
| 2018  | 2.1                                               | 152                | 65.0                                       | 139                                        |

#### 標準理論の大成功



### **Top Spin Correlation**

2018年11月 宇宙市センター構成員会議



Parton level  $\Delta \phi(f^{\dagger}, f)/\pi [rad/\pi]$ 

- $t\bar{t} \rightarrow (Wb)(Wb) \rightarrow (e\nu b)(\mu\nu b)$
- eとµの間の角度相関。
- SM(NLO QCD)の予言値よりも 強い相関がみられた。
- テンプレート・フィット  $n_i = f_{SM} \cdot n_{spin} + (1 - f_{SM}) \cdot n_{nospin}$ フィット結果:  $f_{SM} = 1.250 \pm 0.026 \pm 0.063$
- SMからのずれ: 3.2σ (syst込み)

### Top Spin Correlation CMSの分布





- NLO QCD+EWKはデータをよく再現する。
- 理論計算の精度が足りていないせいと結論できるか。

ヒッグス粒子発見の発表





2012年7月4日 LHC加速器の ATLAS/CMS両実験が発見を報告

2013年 アングラール、ヒッグス がノーベル物理学賞を受賞

#### ヒッグス発見チャンネルの現在

#### 2012年夏、ヒッグス粒子発見時のデータ

#### Phys. Lett. B 716 (2012) 1-29

2チャンネル合わせて5.9σ.







#### LHCでのヒッグス粒子の生成



### ヒッグス粒子の崩壊



さまざまな生成・崩壊モード

- さまざまな測定を行い、標準 理論を検証できる。
- 重心エネルギー8 TeV⇒13 TeV
- ・ 生成断面積は、2-5倍。
- Run2では、たくさん作って 様々なチャンネルで精密測定

   する。



Figure 6: Leading-order Feynman diagrams of Higgs boson decays to a pair of photons.

• 崩壊分岐比 (*m<sub>H</sub>*= 125 GeV)

|                              | スレ | -עיינא                     | - 120                                            | ucvj                       |                   |   |                               |                      |
|------------------------------|----|----------------------------|--------------------------------------------------|----------------------------|-------------------|---|-------------------------------|----------------------|
| $H  ightarrow b\overline{b}$ |    | $H  ightarrow 	au^+ 	au^-$ |                                                  | $H  ightarrow \mu^+ \mu^-$ |                   |   | $H \rightarrow c\overline{c}$ |                      |
| 57.7%                        |    | 6.329                      | %                                                | 0.022%                     |                   |   | 2.91%                         |                      |
| H  ightarrow gg              | H  | $I 	o \gamma \gamma$       | $\rightarrow \gamma \gamma \qquad H \rightarrow$ |                            | $H \rightarrow W$ | W | $H \rightarrow ZZ$            | Γ <sub>H</sub> [MeV] |
| 8.6%                         |    | 0.23%                      | 0.15%                                            |                            | 21.5%             | ı | 2.64%                         | 4.07                 |

### Run1での信号の有意度 з年ほど前のスライドから

#### ATLAS、CMS個別

| Channel                              | Referenc<br>individual pu | es for<br>blications | Signal stro<br>from                                       | ength $[\mu]$<br>results in this          | Signal significance $[\sigma]$<br>paper (Section 5.2) |       |  |
|--------------------------------------|---------------------------|----------------------|-----------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|-------|--|
|                                      | ATLAS                     | CMS                  | ATLAS                                                     | CMS                                       | ATLAS                                                 | CMS   |  |
| $H \rightarrow \gamma \gamma$        | [51]                      | [52]                 | $1.15^{+0.27}_{-0.25}$                                    | 1.12 <sup>+0.25</sup><br>(+0.24)          | 5.0                                                   | 5.6   |  |
| $H \rightarrow ZZ \rightarrow 4\ell$ | [53]                      | [54]                 | (_0.24)<br>1.51 <sup>+0.39</sup><br>1.51 <sup>-0.34</sup> | (_0.22)<br>1.05 <sup>+0.32</sup><br>-0.27 | 6.6                                                   | (5.1) |  |
|                                      |                           |                      | $\binom{+0.33}{-0.27}$                                    | $\binom{+0.31}{-0.26}$                    | (5.5)                                                 | (6.8) |  |
| $H \rightarrow WW$                   | [55,56]                   | [57]                 | $1.23^{+0.23}_{-0.21}$                                    | $0.91^{+0.24}_{-0.21}$                    | 6.8                                                   | 4.8   |  |
|                                      |                           |                      | $\binom{+0.21}{-0.20}$                                    | $\binom{+0.23}{-0.20}$                    | (5.6)                                                 | (5.6) |  |
| $H \rightarrow \tau \tau$            | [58]                      | [59]                 | $1.41^{+0.40}_{-0.35}$                                    | $0.89^{+0.31}_{-0.28}$                    | 4.4                                                   | 3.4   |  |
|                                      |                           |                      | $\binom{+0.37}{-0.33}$                                    | $\binom{+0.31}{-0.29}$                    | (3.3)                                                 | (3.7) |  |
| $H \rightarrow bb$                   | [38]                      | [39]                 | $0.62^{+0.37}_{-0.36}$                                    | 0.81+0.45                                 | 1.7                                                   | 2.0   |  |
|                                      | 12-0-222                  | A10 1 1 1 1          | $\binom{+0.39}{-0.37}$                                    | $\binom{+0.45}{-0.43}$                    | (2.7)                                                 | (2.5) |  |
| $H \rightarrow \mu \mu$              | [60]                      | [61]                 | $-0.7 \pm 3.6$                                            | $0.8 \pm 3.5$                             |                                                       |       |  |
|                                      |                           |                      | (±3.6)                                                    | (±3.5)                                    |                                                       |       |  |
| tt H production                      | [28, 62, 63]              | [65]                 | $1.9^{+0.8}_{-0.7}$                                       | $2.9^{+1.0}_{-0.9}$                       | 2.7                                                   | 3.6   |  |
|                                      |                           |                      | $\binom{+0.72}{-0.66}$                                    | $\binom{+0.88}{-0.80}$                    | (1.6)                                                 | (1.3) |  |

3σ:"兆候が見えた" 5σ:"発見した"

- メインの生成・崩壊過程の 多くはRun 1で発見がす んだ。
- ttH生成、 $H \rightarrow bb$ はRun2 で検証していく。
- LHC Run 2では、一個一 個の過程の理解を確立し、 精密測定に入っていく。

ATLAS+CMS

| Production process        | Measured significance ( $\sigma$ ) | Expected significance $(\sigma)$ |
|---------------------------|------------------------------------|----------------------------------|
| VBF                       | 54                                 | 4.7                              |
| WH                        | 2.4                                | 2.7                              |
| ZH                        | 2.3                                | 2.9                              |
| VH                        | 3.5                                | 4.2                              |
| ttH                       | 4.4                                | 2.0                              |
| Decay channel             |                                    | 12045                            |
| $H \rightarrow \tau \tau$ | 5.5                                | 5.0                              |
| $H \rightarrow bb$        | 2.6                                | 3.7                              |

ATLAS-CONF-2015-044

## Run1での信号の有意度

ATLAS、CMS個別

| Channel                       | Referenc<br>individual pu | es for<br>blications | Signal stro<br>from                                               | ength [µ]<br>results in this                              | Signal significance $[\sigma]$<br>paper (Section 5.2) |              |  |  |
|-------------------------------|---------------------------|----------------------|-------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|--------------|--|--|
|                               | ATLAS                     | CMS                  | ATLAS                                                             | CMS                                                       | ATLAS                                                 | CMS          |  |  |
| $H \rightarrow \gamma \gamma$ | [51]                      | [52]                 | $1.15^{+0.27}_{-0.25}$                                            | $1.12^{+0.25}_{-0.23}$                                    | 5.0                                                   | 5.6          |  |  |
| $H \to ZZ \to 4\ell$          | [53]                      | [54]                 | (-0.24)<br>$1.51^{+0.39}_{-0.34}$<br>$(^{+0.33}_{-0.34})$         | $1.05^{+0.32}_{-0.27}$                                    | 6.6                                                   | 7.0          |  |  |
| $H \rightarrow WW$            | [55, 56]                  | [57]                 | (-0.27)<br>1.23 <sup>+0.23</sup><br>(-0.21)<br>(+0.21)<br>(+0.21) | (-0.26)<br>$0.91^{+0.24}_{-0.21}$<br>$(^{+0.23}_{-0.20})$ | 6.8                                                   | 4.8          |  |  |
| $H \to \tau \tau$             | [58]                      | [59]                 | $1.41^{+0.40}_{-0.35}$<br>$(^{+0.37}_{-0.33})$                    | $0.89^{+0.31}_{-0.28}$<br>$(^{+0.31}_{-0.29})$            | 4.4 (3.3)                                             | 3.4<br>(3.7) |  |  |
| $H \rightarrow bb$            | [38]                      | [39]                 | $0.62^{+0.37}_{-0.36}$ $(^{+0.39}_{-0.37})$                       | $0.81^{+0.45}_{-0.42} \\ (^{+0.45}_{-0.43})$              | <del>1.7</del> 5.3<br>(2.7)                           | 2.0<br>(2.5) |  |  |
| $H \rightarrow \mu \mu$       | [60]                      | [61]                 | $-0.7 \pm 3.6$<br>(±3.6)                                          | 0.8 ± 3.5<br>(±3.5)                                       | ГО                                                    |              |  |  |
| tt H production               | [28,62,63]                | [65]                 | $1.9^{+0.8}_{-0.7}$<br>$(^{+0.72}_{-0.66})$                       | $2.9^{+1.0}_{-0.9}$<br>$(^{+0.88}_{-0.80})$               | 2.7<br>(1.6)                                          | 3.6<br>(1.3) |  |  |

3σ: "兆候が見えた" 5σ: "発見した"

- ゲージボソンと第三
   世代との結合は確
   立できた。
- 第2世代との結合、
   見えるか?

ATLAS+CMS







ATLAS-CONF-2015-044

ATLAS-CONF-2018-026

#### Search for $H \rightarrow \mu\mu$

- 第3世代(*τ*, *b*, *t*)との湯川カップリングは確認できた。
- 第2世代粒子との湯川カップリングの発見を目指す
  - VBFに特化した信号領域を定義して解析感度を向上
    - 前後方dijet, high m(jj) => VBFチャンネル



#### **Higgs Coupling Measurement**







# Vector Boson Scattering Processes

- Vector boson scattering involves
  - Triple and Quadratic Gauge Couplings
  - Higgs restores unitarity at high energies





VBSは、ちょうどプロセスが発見に達したところ。 これから、ヒッグスとの干渉について、精密検証を行う。



### ヒッグス自己結合測定

- DiHiggs事象を探して解析する。
- DiHiggsは、2つのダイヤグラムの干 渉が起こる。
- もし自己相互作用(λ<sub>HHH</sub>)がなければ、
   HH生成の断面積は2倍になる。







Expected event yields for  $\frac{\lambda_{HHH}}{2SM} = 1$ 

| Decay Channel                   | Branching Ratio | Total Yield (3000 fb <sup>-1</sup> ) |
|---------------------------------|-----------------|--------------------------------------|
| $b\overline{b} + b\overline{b}$ | 33%             | 40,000                               |
| $b\overline{b} + W^+W^-$        | 25%             | 31,000                               |
| $b\overline{b} + \tau^+ \tau^-$ | 7.3%            | 8,900                                |
| $ZZ + b\overline{b}$            | 3.1%            | 3,800                                |
| $W^+W^- + \tau^+\tau^-$         | 2.7%            | 3,300                                |
| $ZZ + W^+W^-$                   | 1.1%            | 1,300                                |
| $\gamma\gamma + b\overline{b}$  | 0.26%           | 320                                  |
| $\gamma\gamma + \gamma\gamma$   | 0.0010%         | 1.2                                  |

#### Run 2でのDihiggs探索結果

まずはDihiggs事象を探している。

Dihiggs事象の生成断面積に対する上限 自己相互結合に対する制限



JHEP 11 (2018) 085 荷電ヒッグス粒子に対する制約 荷電ヒッグス粒子の信号は見つからず、 データはバックグラウンドとよく一致した。 MSSM(hMSSMシナリオ)に対 生成断面積に対する制約 する制約 10 - $\sigma(pp \rightarrow tbH^{\pm}) \times B(H^{\pm} \rightarrow tb) \text{ [pb]}$ tanß ATLAS observed limit (CL) 40 ATLAS 95% expected limit (CL\_) √s=13 TeV, 36.1 fb<sup>-1</sup> 30 Expected  $\pm 1\sigma$ 20 Expected  $\pm 2\sigma$ 95% obs. excl. (CL\_)  $tbH^+, H^+ \rightarrow tb$  $tan\beta = 0.5$ 10 hMSSM  $^{\text{tod-}} \tan\beta = 1$ ...... 95% exp. excl. (CL\_)  $m_{L}^{mod}$  tan $\beta = 60$ √s = 13 TeV Expected  $\pm 1\sigma$ 36.1 fb<sup>-1</sup> 3 Expected  $\pm 2\sigma$ 2  $10^{-1}$ 0.6 200 300 400 500 600 700 800 900 1000 600 800 1000 1200 1400 1600 1800 2000 400 200 m<sub>µ⁺</sub> [GeV] m<sub>H\*</sub> [GeV]

D1 山内

#### 

#### JHEP 11 (2018) 085



27

### Long Lived Chargino

- WinoがLSPの場合に、 $\chi_1^+$ ,  $\chi_1^0$ の質量が縮退する場合がある。 – AMSBでは、この $\chi_1^0$ がDMになりうる。
- $\chi_0^+$ は長寿命→Long Lived Particle (**LLP**)になる。



#### **ATLAS Supersymmetry Searches**

#### ATLAS SUSY Searches\* - 95% CL Lower Limits

#### **ATLAS** Preliminary $\sqrt{s} = 13$ TeV

October 2019

|                                                                                              | Model                                                                                                                                 | S                                 | ignatur                          | <b>e</b> ∫                                 | `L dt [fb⁻          | ']                                                                                                           |                                         | Mass limit                       |              |                        |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            | Reference                                                   |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|--------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|--------------|------------------------|-----------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 6                                                                                            | $\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}^0_1$                                                                           | 0 e, μ<br>mono-jet                | 2-6 jets<br>1-3 jets             | $E_T^{ m miss} \ E_T^{ m miss}$            | 139<br>36.1         | <ul> <li> <i>q</i> [10× D         <i>q</i>         [1×, 8&gt;         </li> </ul>                            | egen.]<br>< Degen.]                     | 0.43                             | 0.1          | 71                     | 1         | 1.9                   | $m(	ilde{\mathcal{X}}_1^0,m(	ilde{q}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )<400 GeV<br>$\tilde{\chi}_1^0$ )=5 GeV                                                    | ATLAS-CONF-2019-040<br>1711.03301                           |
| arche                                                                                        | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$                                                              | 0 <i>e</i> , <i>µ</i>             | 2-6 jets                         | $E_T^{\rm miss}$                           | 139                 | ğ<br>ğ                                                                                                       |                                         |                                  |              | Forbidden              |           | 2<br>1.15-1.95        | .35 m(<br>m( $\tilde{\ell}_1^0$ )=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\tilde{\chi}_{1}^{0}$ )=0 GeV<br>=1000 GeV                                                | ATLAS-CONF-2019-040<br>ATLAS-CONF-2019-040                  |
| /e Se                                                                                        | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$                                                        | З е, µ<br>ее, µµ                  | 4 jets<br>2 jets                 | $E_T^{\rm miss}$                           | 36.1<br>36.1        | ĩg<br>ĩg                                                                                                     |                                         |                                  |              |                        | 1.2       | 1.85                  | $m(\widetilde{\chi}_{1}^{0})$<br>$m(\widetilde{g})$ - $m(\widetilde{\chi})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )<800 GeV<br>1)=50 GeV                                                                     | 1706.03731<br>1805.11381                                    |
| Iclusiv                                                                                      | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$                                                                      | 0 e, μ<br>SS e, μ                 | 7-11 jets<br>6 jets              | $E_T^{\rm miss}$                           | 36.1<br>139         | ğ<br>ğ                                                                                                       |                                         |                                  |              |                        | 1.15      | 1.8                   | $m(\tilde{\chi}^0_1)$<br>$m(\tilde{g})$ - $m(\tilde{\chi}^0_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <400 GeV<br>)=200 GeV                                                                      | 1708.02794<br>1909.08457                                    |
| 11                                                                                           | $\tilde{g}\tilde{g},  \tilde{g} \to t t \tilde{\chi}_1^0$                                                                             | 0-1 <i>e</i> ,μ<br>SS <i>e</i> ,μ | 3 <i>b</i><br>6 jets             | $E_T^{\rm miss}$                           | 79.8<br>139         | ĩg<br>ĩg                                                                                                     |                                         |                                  |              |                        | 1.25      | 2.2                   | $\begin{array}{c} \mathbf{m}(\tilde{\chi}_1^0)\\ \mathbf{m}(\tilde{g}) \cdot \mathbf{m}(\tilde{\chi}_1^0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )<200 GeV<br>)=300 GeV                                                                     | ATLAS-CONF-2018-041<br>ATLAS-CONF-2019-015                  |
|                                                                                              | $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / \iota \tilde{\chi}_1^{\pm}$                                    |                                   | Multiple<br>Multiple<br>Multiple |                                            | 36.1<br>36.1<br>139 | $egin{array}{c} 	ilde{b}_1 \ 	ilde{b}_1 \ 	ilde{b}_1 \ 	ilde{b}_1 \ 	ilde{b}_1 \end{array}$                  | Fort                                    | bidden<br>Forbiddei<br>Forbiddei | n 0.5<br>n 0 | 0.9<br>58-0.82<br>).74 |           | $m(\!	ilde{\chi}_1^0$ | $m(\tilde{\chi}_{1}^{0})=300 \text{ GeV},$<br>$m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=B)$<br>$)=200 \text{ GeV}, m(\tilde{\chi}_{1}^{+})=300 \text{ GeV},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $BR(b\tilde{\chi}_{1}^{0})=1 R(t\tilde{\chi}_{1}^{\pm})=0.5 BR(t\tilde{\chi}_{1}^{\pm})=1$ | 1708.09266, 1711.03301<br>1708.09266<br>ATLAS-CONF-2019-015 |
| urks<br>tion                                                                                 | $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$                                | 0 <i>e</i> , <i>µ</i>             | 6 <i>b</i>                       | $E_T^{\rm miss}$                           | 139                 | $egin{array}{c} ar{b}_1 \ ar{b}_1 \end{array}$                                                               | Forbidden                               | 0.23-0.4                         | 18           | C                      | ).23-1.35 |                       | $\begin{array}{l} \Delta m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0}){=}130 \ \text{GeV}, \ m(\tilde{\chi}_{1}^{0},\tilde{\chi}_{1}^{0}){=}130 \ \text{GeV}, \ m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0}){=}130 \ \text{GeV}, \ m(\tilde{\chi}_{2}^{0},\tilde$ | $\hat{\chi}_{1}^{0}$ = 100 GeV<br>$\hat{\chi}_{1}^{0}$ = 0 GeV                             | 1908.03122<br>1908.03122                                    |
| due                                                                                          | $\tilde{\iota}_1 \tilde{\iota}_1, \tilde{\iota}_1 \rightarrow W b \tilde{\chi}_1^0$ or $\iota \tilde{\chi}_1^0$                       | 0-2 <i>e</i> , <i>µ</i>           | 0-2 jets/1-2                     | $b E_T^{miss}$                             | 36.1                | ĩ <sub>1</sub>                                                                                               |                                         |                                  |              | 1.0                    |           |                       | m(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\tilde{\chi}_{1}^{0}$ )=1 GeV                                                             | 1506.08616, 1709.04183, 1711.11520                          |
| 1. S<br>Droe                                                                                 | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$                                                               | 1 <i>e</i> , <i>µ</i>             | 3 jets/1 b                       | $E_T^{\rm miss}$                           | 139                 | ĩı                                                                                                           |                                         | 0.                               | .44-0.59     |                        |           |                       | $m(\tilde{\chi}_1^0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )=400 GeV                                                                                  | ATLAS-CONF-2019-017                                         |
| gei                                                                                          | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 bv, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$                       | $1 \tau + 1 e, \mu, \tau$         | r 2 jets/1 b                     | $E_T^{\text{miss}}$                        | 36.1                | Ĩ1                                                                                                           |                                         |                                  |              |                        | 1.16      |                       | m(Ťi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )=800 GeV                                                                                  | 1803.10178                                                  |
| 3rd<br>dire                                                                                  | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$ | 0 <i>e</i> , <i>µ</i>             | 2 c                              | $E_T^{\rm miss}$                           | 36.1                | č<br>7                                                                                                       |                                         | 0.46                             |              | 0.85                   |           |                       | m(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\tilde{\chi}_1^0$ )=0 GeV                                                                 | 1805.01649                                                  |
|                                                                                              |                                                                                                                                       | 0 <i>e</i> , <i>µ</i>             | mono-jet                         | $E_T^{\rm miss}$                           | 36.1                | $\tilde{l}_1$                                                                                                |                                         | 0.40                             | u .          |                        |           |                       | $m(t_1,c)$ - $m(t_2,c)$ - $m(t_1,c)$ - $m(t_2,c)$ - $m(t_1,c)$ - $m(t_2,c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\tilde{\chi}_{1}^{0}$ = 5 GeV                                                             | 1711.03301                                                  |
|                                                                                              | $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$                                                                    | 1-2 e, µ                          | 4 <i>b</i>                       | $E_T^{\rm miss}$                           | 36.1                | $\tilde{t}_2$                                                                                                |                                         |                                  | 0            | 0.32-0.88              |           |                       | $m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{\iota}_1)-m(\tilde{\chi}_1^0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 180 GeV                                                                                  | 1706.03986                                                  |
|                                                                                              | $\tilde{\iota}_2 \tilde{\iota}_2, \tilde{\iota}_2 \rightarrow \tilde{\iota}_1 + Z$                                                    | 3 e, µ                            | 1 <i>b</i>                       | $E_T^{\rm miss}$                           | 139                 | Ĩ2                                                                                                           |                                         | Forbidde                         | en           | 0.86                   |           |                       | $m(\tilde{\chi}_1^0)=360 \text{ GeV}, m(\tilde{\iota}_1)-m(\tilde{\chi}_1^0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )= 40 GeV                                                                                  | ATLAS-CONF-2019-016                                         |
|                                                                                              | $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ                                                                                        | 2-3 e, μ<br>ee, μμ                | ≥ 1                              | $E_T^{ m miss} \ E_T^{ m miss}$            | 36.1<br>139         | $\begin{array}{c} \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0\\ \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 \end{array}$ | 0.205                                   |                                  | 0.6          |                        |           |                       | $m(	ilde{\chi}_1^{\pm})$ -m(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $m(\tilde{\chi}_{1}^{0})=0$<br>$\tilde{\chi}_{1}^{0})=5 \text{ GeV}$                       | 1403.5294, 1806.02293<br>ATLAS-CONF-2019-014                |
|                                                                                              | $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via <i>WW</i>                                                                             | 2 e, µ                            |                                  | $E_T^{\rm miss}$                           | 139                 | $\tilde{\chi}_{1}^{\pm}$                                                                                     |                                         | 0.42                             |              |                        |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $m(\tilde{\chi}_1^0)=0$                                                                    | 1908.08215                                                  |
| 1400                                                                                         | $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via $Wh$                                                                                      | 0-1 e, µ                          | $2 b/2 \gamma$                   | $E_T^{\rm miss}$                           | 139                 | $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ F                                                                    | orbidden                                |                                  | 0            | 0.74                   |           |                       | m( $ec{\chi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>1)=70 GeV                                                                             | ATLAS-CONF-2019-019, 1909.09226                             |
| ect                                                                                          | $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_L / \tilde{\nu}$                                                        | 2 e, µ                            |                                  | $E_T^{\rm miss}$                           | 139                 | $\tilde{\chi}_{1}^{\pm}$                                                                                     |                                         |                                  |              | 1.0                    |           |                       | $m(\tilde{\ell},\tilde{\nu})=0.5(m\ell)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\tilde{\ell}_1^{\pm}$ )+m( $\tilde{\ell}_1^0$ ))                                          | ATLAS-CONF-2019-008                                         |
| 目前                                                                                           | $\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$                                                            | 2τ                                |                                  | $E_T^{\rm miss}$                           | 139                 | τ̃ [τ̃L, τ̃β                                                                                                 | ι,L] <b>Ο</b> .:                        | 16-0.3 0.12-0.39                 |              |                        |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $m(\tilde{\chi}_1^0)=0$                                                                    | ATLAS-CONF-2019-018                                         |
|                                                                                              | $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$                                                | $2e,\mu$                          | 0 jets                           | $E_T^{\text{miss}}$                        | 139                 | ĩ                                                                                                            |                                         |                                  | 0            | .7                     |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $m(\tilde{\chi}_{1}^{0})=0$                                                                | ATLAS-CONF-2019-008                                         |
|                                                                                              |                                                                                                                                       | 2 e, µ                            | ≥ 1                              | $E_T$                                      | 139                 | 1                                                                                                            | 0.25                                    | 00                               |              |                        |           |                       | $m(\ell)-m(\chi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i)=10 GeV                                                                                  | ATLAS-CONF-2019-014                                         |
|                                                                                              | $\bar{H}\bar{H}, \bar{H} \rightarrow hG/ZG$                                                                                           | 0 e, μ<br>4 e, μ                  | $\geq 3 b$<br>0 jets             | $E_T^{\text{miss}}$<br>$E_T^{\text{miss}}$ | 36.1<br>36.1        | ΪΙ<br>Ĥ                                                                                                      | 0.13-0.23                               | 0.3                              | 0            | 0.29-0.88              |           |                       | $BR(\widetilde{\mathcal{X}})$<br>$BR(\widetilde{\mathcal{X}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $h_1^0 \rightarrow h\tilde{G}$ )=1<br>$h_1^0 \rightarrow Z\tilde{G}$ )=1                   | 1806.04030<br>1804.03602                                    |
| lived                                                                                        | $\text{Direct}\tilde{\chi}_1^{*}\tilde{\chi}_1^{-}$ prod., long-lived $\tilde{\chi}_1^{\pm}$                                          | Disapp. trk                       | 1 jet                            | $E_T^{ m miss}$                            | 36.1                |                                                                                                              | 5                                       | 0.46                             | i            |                        |           |                       | Pur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pure Wino<br>e Higgsino                                                                    | 1712.02118<br>ATL-PHYS-PUB-2017-019                         |
| ng                                                                                           | Stable $\tilde{g}$ R-hadron                                                                                                           |                                   | Multiple                         |                                            | 36.1                | ğ                                                                                                            |                                         |                                  |              |                        |           | 2.0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            | 1902.01636,1808.04095                                       |
| p                                                                                            | Metastable $\tilde{g}$ R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$                                                          |                                   | Multiple                         |                                            | 36.1                | $\tilde{g} = [\tau(\tilde{g}) =$                                                                             | 10 ns, 0.2 ns]                          |                                  |              |                        |           | 2.05                  | 2.4 m( $\tilde{\chi}_1^0$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =100 GeV                                                                                   | 1710.04901,1808.04095                                       |
|                                                                                              | LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$                                            | еµ,ет,µт                          |                                  |                                            | 3.2                 | ν.                                                                                                           |                                         |                                  |              |                        |           | 1.9                   | $\lambda'_{111} = 0.11, \lambda_{132/1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33/233=0.07                                                                                | 1607.08079                                                  |
|                                                                                              | $\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} / \tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\gamma\gamma$                   | 4 e. µ                            | 0 jets                           | $E_{T}^{miss}$                             | 36.1                | $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ [3]                                                            | $a_{121} \neq 0, \lambda_{124} \neq 0]$ |                                  |              | 0.82                   | 1.33      |                       | $m(\tilde{\chi}_1^0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =100 GeV                                                                                   | 1804.03602                                                  |
|                                                                                              | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow ga\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow aaa$                                      | 4                                 | -5 large-R je                    | ets                                        | 36.1                | $\tilde{g}$ [m( $\tilde{\chi}_{1}^{0}$ )                                                                     | -200 GeV, 1100 G                        | ieV]                             |              |                        | 1.3       | 1.9                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Large $\lambda_{112}^{\prime\prime}$                                                       | 1804.03568                                                  |
| 2                                                                                            | 3373 11 11 11                                                                                                                         |                                   | Multiple                         |                                            | 36.1                | $\tilde{g} = [\lambda''_{112} = 2$                                                                           | e-4, 2e-5]                              |                                  |              | 1.0                    | 5         | 2.0                   | $m(\tilde{\chi}_{1}^{0})=200 \text{ Ge}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V, bino-like                                                                               | ATLAS-CONF-2018-003                                         |
| RF                                                                                           | $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$                                      |                                   | Multiple                         |                                            | 36.1                | $\tilde{g} = [\mathcal{X}''_{323} = 2$                                                                       | e-4, 1e-2]                              |                                  | 0.55         | 1.0                    | 5         |                       | m( $\tilde{\chi}_{1}^{0}$ )=200 Ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V, bino-like                                                                               | ATLAS-CONF-2018-003                                         |
|                                                                                              | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$                                                                                 |                                   | 2 jets + 2 b                     |                                            | 36.7                | li [qq, bs                                                                                                   | 1                                       | 0.42                             | 0.61         |                        |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            | 1710.07171                                                  |
|                                                                                              | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$                                                                              | 2 e, µ                            | 2 <i>b</i>                       |                                            | 36.1                | $\tilde{t}_1$                                                                                                |                                         |                                  |              |                        | 0.4-1.4   | 15                    | $BR(\tilde{t}_1 \rightarrow be$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e/bμ)>20%                                                                                  | 1710.05544                                                  |
|                                                                                              |                                                                                                                                       | 1μ                                | DV                               |                                            | 136                 | 11 [1e-10                                                                                                    | < A <1e-8, 3e-                          | -10< 1' <3e-9]                   |              | 1.0                    |           | 1.6                   | $BR(\bar{t}_1 \rightarrow q\mu) = 100^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %, $\cos\theta_t = 1$                                                                      | ATLAS-CONF-2019-006                                         |
|                                                                                              |                                                                                                                                       |                                   |                                  |                                            |                     |                                                                                                              |                                         |                                  |              |                        |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            |                                                             |
|                                                                                              |                                                                                                                                       |                                   |                                  |                                            |                     |                                                                                                              |                                         |                                  |              |                        | I         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 T                                                                                        | 20                                                          |
| *Only a selection of the available mass limits on new states or $10^{-1}$ 1 Mass scale [TeV] |                                                                                                                                       |                                   |                                  |                                            |                     |                                                                                                              |                                         | 29                               |              |                        |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            |                                                             |

\*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

### Long Lived Heavy Neutral Lepton Search

- Search for right handed majorana neutrino (N or HNL) ٠
  - Production and decay: function of  $m_N$  and coupling strength  $|U|^2$
- A trigger muon w/ pT>28GeV (prompt) ٠
- DV (Displaced Vertex) with two leptons ullet
  - $4 < r_{DV} < 300$  mm
  - $m_{DV}$ >4GeV
- Background: hadron interaction w/ material, metastable b- and s-hadrons, ۲ accidental crossing particles, cosmic ray.



 $\bar{\nu_e}$ 

## バックアップ

#### **Super Cells**





|                      | Elementary Cell                    | Trigge                   | r Tower                            | Super Cell               |                                    |  |
|----------------------|------------------------------------|--------------------------|------------------------------------|--------------------------|------------------------------------|--|
| Layer (barrel)       | $[\Delta \eta \times \Delta \phi]$ | $[n_\eta \times n_\phi]$ | $[\Delta \eta \times \Delta \phi]$ | $[n_\eta \times n_\phi]$ | $[\Delta \eta \times \Delta \phi]$ |  |
| Presampler (layer 0) | 0.025 × 0.1                        | 4 × 1                    |                                    | 4 × 1                    | 0.1 × 0.1                          |  |
| Front (layer 1)      | 0.003125 × 0.1                     | 32 × 1                   | 01201                              | 8 × 1                    | 0.025 × 0.1                        |  |
| Middle (layer 2)     | 0.025 × 0.025                      | 4 × 4                    | U. I X U. I                        | 1 × 4                    | 0.025 × 0.1                        |  |
| Back (layer 3)       | 0.05 × 0.025                       | 2 × 4                    |                                    | 2 × 4                    | 0.1 × 0.1                          |  |

## High Luminosity LHC (HL-LHC)

ratios of LHC parton luminosities:

--- Σaa

ratio

14 TeV / 8 TeV and 33 TeV / 8 TeV

ECFA HL-LHC with L=300 fb<sup>-1</sup> (3 ab<sup>-1</sup>) physics study. Higgs mass precision  $\Delta M_{\rm H} \sim 100$  (50) MeV. Access to top-Yukawa coupling via ttH, and rare decay H $\rightarrow \mu\mu$ .

0

Q

Coupling precision of 10 to 5% reachable (even few% in  $\kappa_{\gamma}/\kappa_{Z}$ ).

Detector performances (trigger, lepton-id, fake,  $\tau$ /b-id) are crucial.

Theory uncertainty dominates - challenge for theorists!



# Full Run 2 Dijet Resonance Search



34

## Full Run 2 Dilepton Resonance Search



No significant excess, set limit on production cross section of heavy particle.



### Full Run 2

#### ATLAS-CONF-2019-008

# Chargino and Slepton Searches Final states: $2\ell + missing E_T$

- ٠
- Use stransverse mass  $M_{T2}$



# Observation of ttH production

- Top quarkの湯川カップリングを直接測定
- Combination of analyses with decays:
  - $-H \rightarrow \gamma \gamma$  (79.8 fb<sup>-1</sup>)
  - $-H \rightarrow WW/ZZ \rightarrow leptons$  (36.1 fb<sup>-1</sup>)
  - $-H \rightarrow \overline{b}b$  (36.1 fb<sup>-1</sup>) ← 本多D論(2018)



5.8 σ Observation (expected sensitivity: 4.9 σ) <sup>37</sup>



<u>Phys. Lett. B 786 (2018) 59</u> **b b** 

## Observation of $H \rightarrow b\overline{b}$

- bottom quarkの湯川カップリング
- Combination of processes:
  - $-ZH \rightarrow (\nu\nu)(bb)$
  - $WH \to (\ell \nu)(bb)$
  - $\, ZH \to (\ell\ell)(bb)$





5.3 σ Observation (expected sensitivity: 4.8 σ) <sup>38</sup>

#### HNL production and decay

$$\sigma(pp \to W) \cdot \mathcal{B}(W \to \ell N) = \sigma(pp \to W) \cdot \mathcal{B}(W \to \ell \nu) \cdot |U|^2 \left(1 - \frac{m_N^2}{m_W^2}\right)^2 \left(1 + \frac{m_N^2}{2m_W^2}\right).$$
(1)

#### 2.2 HNL decay

For this search, partial widths are calculated for all HNL decay channels including leptons and quarks. The calculations consider charged- and neutral-current-mediated interactions as well as QCD loop corrections, which are all described in Ref. [26]. The HNL lifetime  $\tau_N$  has a strong dependence on the coupling strength  $|U|^2$  and also the mass  $m_N$  due to phase-space effects. For a given  $|U|^2$  and  $m_N$ , the total width  $\Gamma = \sum_i \Gamma_i (m_N, |U|^2)$  is computed, and the mean lifetime is obtained as  $\tau_N = \hbar/\Gamma$ . In the relevant range  $4.5 \leq m_N \leq 50$  GeV, the result agrees within 2% with the following parameterisations given in Ref. [27]:  $\tau_{N_{\mu}} = (4.49 \cdot 10^{-12} \text{ s})|U|^{-2}(m_N/1 \text{ GeV})^{-5.19}$  and  $\tau_{N_e} = (4.15 \cdot 10^{-12} \text{ s})|U|^{-2}(m_N/1 \text{ GeV})^{-5.17}$  for dominant mixing to  $\nu_{\mu}$  and  $\nu_e$ , respectively. These relationships, however, assume no LNV decays. If LNV is allowed, twice as many decay channels are allowed, and  $\tau_N$  is reduced by a factor of 2. More elaborate models do not necessarily allow for LNV [23] and thus may or may not contain this factor of 2. To account for this model dependence, both interpretations are considered in the case of the displaced signature, which is not limited to LNV processes.