令和2年度 第2回宇宙史研究センター構成員会議

2020年11月30日 オンライン

1. 銀河における星生成と分子 ガス

・暗黒物質を除く組成 星,ガス,星間塵

 ・現在の銀河は主に 恒星から成る
 → 銀河の形態 ≈ 恒星の分布

・ 銀河の進化 (http://imgsrc.hubblesite.org/より転載)

・暗黒物質を除く組成 星,ガス,星間塵

・現在の銀河は主に
 恒星から成る
 → 銀河の形態 ≈ 恒星の分布

•銀河の進化

(http://imgsrc.hubblesite.org/より転載)

星生成から探る銀河の進化

星間ガスと星生成

(http://imgsrc.hubblesite.org/ 及び http://www.nro.nao.ac.jp/より転載)

星生成効率の多様性

星生成効率 (SFE)
 単位ガス質量あたりの星生成率

 ・銀河内の場所により異なる 分子ガスの運動
 → 分子ガスの密度に影響

•銀河によっても異なる

(Yajima+19を改変)

分子ガス量の導出

• CO-H₂変換係数 (X_{CO}, α_{CO}) $X_{CO} \equiv \frac{N(H_2)}{I_{CO}} = \frac{N(H_2)}{I_{CO}} =$

星間ガス量測定の問題点

 ・ 圧倒的に少ない観測
 ・ 分子ガスはミリ波の観測が必要
 ・
 ・ 撮像が困難
 ・
 電波写真
 ・

数100銀河

 ・間接的な測定

 CO-H₂変換係数は普遍か?

 ← ≤ 10⁻⁴のCO分子を観測

光学写真

>106銀河

2. CO輝線撮像観測プロジェクト

大規模な分子ガス撮像観測

CO Multi-line Imaging of Nearby Galaxies (COMING)

- 国立天文台野辺山45m電波望遠鏡による 近傍銀河のCO撮像観測 (CO/¹³C¹⁶O/ ¹²C¹⁸O J = 1 – 0) (Sorai+ 19)
- •147銀河

(*:卒業生,青字:サブワーキンググループのメンバー)

molecular gas mass

WISE 3.4 mícron-band ímages

🖌 stellar mass

これまでの成果

空間分解した星生成の主系列 *X*_{CO}の金属量 (重元素量) 依存性
高励起線による質量推定

★未発表の図があるため、割愛 興味のある方はご連絡ください。

COスペクトル線とエネルギー

高励起線による質量推定

3. 今後の計画

炭素原子のスペクトル線観測

南極30cm望遠鏡による観測

・暗黒ガスはどのくらい存在するか?

っい仔任するか? 銀河系,マゼラン雲 CI³P₁-³P₀&COJ=4-3 (CI³P₂-³P₁&COJ=7-6)

(Dame+01を改変; http://mwmw.gsfc.nasa.gov/より転載)

銀河間ガスとの収支

•銀河から吹き上がる分子ガス

 ハローから降り積もる 希薄なガス 10'' の量は? 銀河円盤

 $\overline{\mathbf{A}}$

赤緯

赤経 (Salak+20を改変)

• H ⇔ H₂の転換量は?

分子ガス量測定の高精度化

 分子ガスの分布 → COMING + 追加観測 高励起線から質量導出することへの注意 • CO-H,変換係数 銀河依存性あり → 金属量依存性 今冬観測予定 • 複数輝線による励起解析 → 解析開始

暗黒ガス+ガスの流出入

・中性炭素原子のサブミリ波観測
 → 銀河系・マゼラン雲の掃天観測
 @南極30cm望遠鏡

・銀河アウトフロー
・ハローからのガス 物質循環
・HとH₂の間の転換 ← 今後検討

(科研費基盤研究(C) 20K04008)

