銀河における星間ガス質量の高精度な導出
 Precise measurement of interstellar gas in galaxies

南極天文学部門宇宙観測研究室（クロスアポイントメント）
（北海道大学大学院理学研究院物理学部門）

筑波大学

宇宙史研究センター

Tomonaga Center for the History of the Universe

1．銀河における星生成と分子 ガス
－暗黒物質を除く組成星，ガス，星間塵
－現在の銀河は主に恒星から成る
\rightarrow 銀河の形態 \approx 恒星の分布
－銀河の進化
（http：／／imgsrc．hubblesite．org／より転載）
－暗黒物質を除く組成星，ガス，星間麀
－現在の銀河は主に恒星から成る
\rightarrow 銀河の形態 \approx 恒星の分布
－銀河の進化
（http：／／imgsrc．hubblesite．org／より転載）

星生成から探る銀河の進化
－星生成率 $(S F R)$銀河で単位時間に生成 $50-$ される星の総質量
－星質量（ $M_{\text {star }}$ ）銀河を構成する星の総質量

－星生成の主系列（e．g．，Noeske＋07）
（4）北海道大学
镪筑波大学现波大学 TCHOC

星間ガスと星生成

（http：／／imgsrc．hubblesite．org／及び http：／／www．nro．nao．ac．jp／より転載）
北海道大学

星生成効率の多様性
－星生成効率（SFE）単位ガス質量あたりの星生成率
$\operatorname{SFE}\left(\mathrm{Gyr}^{-1}\right)$
－銀河內の場所により異なる分子ガスの運動
\rightarrow 分子ガスの密度に影響
－銀河によっても異なる

分子ガス量の導出
－CO分子のスペクトル線強度を測定 \leqslant 低温のため，水素分子が放射できない
－CO－ H_{2} 変換係数 $\left(X_{\mathrm{CO}}, \alpha_{\mathrm{CO}}\right)$

星間ガス量測定の問題点

－圧倒的に少ない観測分子ガスはミリ波の観測が必要 \leftarrow 撮像が困難
－間接的な測定 $\mathrm{CO}-\mathrm{H}_{2}$ 変換係数は普遍か？電波写真
数100 銀河

$\leftarrow \leqslant 10^{-4}$ のCO分子を観測
－暗黒ガス

2．CO輝線撮像観測プロジェクト

大規模な分子ガス撮像観測

CO Multi－line Imaging of Nearby Galaxies （COMING）
－国立天文台野辺山45m電波望遠鏡による近傍銀河のCO撮像観測（CO／${ }^{13} \mathrm{C}^{16} \mathrm{O} /$ ${ }^{12} \mathrm{C}^{18} \mathrm{O} \mathrm{J}=1-0$ ）（Sorai＋19）

- 147銀河
- 今冬さらに約20銀河を追加観測予定

北海道大学
䜌筑波大学 TCMOC

名古屋大学 名古屋大学竹内努 Cooray，S．依田萌 $*$ Shi，w．
近藤千紘＊大森清賈列ストアアー北條妙

関西学院大学中井直正野間勇斗＊澒田益道

山口大学／国立天文台
松本尚子＊
鹿児鳥大学
中西裕之
齊田智恵＊
上野紗英子 $*$
江副聡一＊
Max－Planck－Institut für Astronomie PAN，H－A．

北海道大学㫜徠和夫梅井迪子＊瀬川陽子＊田代貴美 $*$岸田望美＊矢島義之柴田修吾＊梶川明袏実八嶋裕清水一揮

東北大学小林将人

大阪府立大学村岡和幸馬路博之＊武田美保＊柳谷和希＊黒田麻友＊

上越教育大学金子紘之

国立天文台
Espada，D．
国立天文台

北海道大学
Pettitt，A．

筑波大学
久野成夫 Salak，D．畠山拓也＊田中隆広富安悠人＊佐藤佑哉 $*$保田敦司喜多将一朗＊小松崎龍聖＊川原裕佑＊山本剛大＊柴田和樹 （㫜徠和夫）
筑波大学井上茂樹

これまでの成果

- 空間分解した星生成の主系列
- X_{CO} の金属量（重元素量）依存性
- 高励起線による質量推定
※未発表の図があるため，割愛，興味の ある方はご連絡ください。

X_{CO} の金属量（重元素量）依存性

COスペクトル線とエネルギー

－高励起の遷移は温度•密度の高 いガスを選択的 に観測！

高励起線による質量推定
－分子ガス質量を誤推定

- 景篭
- スケーリング則の解釈
- 遠方銀河のガス質量

（Yajima＋20，submittedを改変）

複数輝線を用いた励起解析
－ガスの密度•温度を決定

3．今後の計画

北海道大学

暗黒ガス

－分子雲の構造 COの観測で見えている表面
 N 10 to度

（Bolatto，Wolfire，Leroy 2013，ARA\＆A，51，207を改変）
（䰝北海道大学
筑波大学 ${ }^{\text {PCWoc }}$

炭素原子のスペクトル線観測

エネルギー準位
8

励起計算例

（RADEX（van der Tak＋07）を使用）

北海道大学
筑波大学

南極 30 cm 望遠鏡による観測

－暗黒ガスはどのくらい存在するか？

銀河系，マゼラン雲
CI ${ }^{3} P_{1}-{ }^{3} P_{0}$ \＆CO $J=4-3$ （CI ${ }^{3} P_{2}-{ }^{3} P_{1} \&$ CO $J=7-6$ ）

（Dame＋01を改変；http：／／mwmw．gsfc．nasa．gov／より転載）

銀河間ガスとの収支

- 銀河から吹き上がる分子ガス
- ハローから降り積もる希薄なガス の量は？

銀河甲盤

赤経
（Salak＋20を改変）
－ $\mathrm{H} \Leftrightarrow \mathrm{H}_{2}$ の転換量は？
4. まとめ

分子ガス量測定の高精度化

－分子ガスの分布
\rightarrow COMING＋追加観測
高励起線から質量導出することへの注意
－ $\mathrm{CO}-\mathrm{H}_{2}$ 変換係数
銀河依存性あり
\rightarrow 金属量依存性 今冬観測予定
－複数輝線による励起解析
\rightarrow 解析開始

暗黒ガス＋ガスの流出入

－中性炭素原子のサブミリ波観測
\rightarrow 銀河系・マゼラン雲の掃天観測
＠南極 30 cm 望遠鏡

- 銀河アウトフロー
- ハローからのガス－物質循環
- H と H_{2} の間の転換 $\quad \leftarrow$ 今後検討
（科研費基盤研究（C）20K04008）
北海道大学
筑波大学

