Cumulants of net baryon-number fluctuations from lattice QCD

HotQCD Collaboration, Phys.Rev.D 101 (2020) 7, 074502

大野浩史

筑波大学計算科学研究センター

宇宙史研究センター2021年度 第1回構成員会議・成果報告&交流会 2021年6月25日

自己紹介

- 略歴
 - 2011年3月 筑波大学大学院博士後期課程物理学専攻修了
 - 2011年4月-2012年3月 学振特別研究員 米国 Brookhaven国立研究所(BNL)、独国 Bielefelde大学に滞在
 - 2012年4月-2013年8月 Bielefeld大学ポスドク研究員
 - 2013年8月-2014年3月 BNLポスドク研究員
 - 2014年4月- 筑波大学計算科学研究センター助教
- 研究
 - 格子QCDに基づく数値シミュレーションを用いた有限温度・密度QCDの研究
 - 特に、QCD相構造やQGP中のクォーコニウムの性質について
 - HotQCD Collaboration のメンバーとしてBNLやBielefeld、CCNUの研究者と共同研究

量子色力学(Quantum Chromodynamics/QCD)

- ・ 強い相互作用(力)とクォーク・グルーオンに関する理論
- SU(3)非可換ゲージ理論 – グルーオンの自己相互作用がある
- ・ 特徴的な性質
 - クォークの閉じ込め
 - 漸近的自由性
 - カイラル対称性の自発的破れ

11

G. M. Prosperi, M. Raciti, C. Simolo, Prog. Part. Nucl. Phys. **58**, 387-438 (2007)

QCD相図

- 超高温•高密度
 - 初期宇宙、中性子星内部
 - クォーク・グルーオンが自由に振る舞う
 - →新しい物質の状態:

Quark-Gluon-Plasma (QGP)

- 相転移
 - 高温低密度(格子QCD計算が可能)
 - →クロスオーバー
 - 低温高密度(有効理論を適用)
 - →1次相転移
 - 中間領域
 - →2次相転移点(臨界点)があるはず!
 - →理論的・実験的に検証が必要
 - :格子QCD計算、RHIC Beam Energy Scan (BES)

保存量の揺らぎ

n

• 圧力	バリオン数、電荷、ストレンジネス	クォーク化学ポテンシャル 1 2
$\frac{P(T,\vec{\mu})}{T^4} = \frac{1}{VT^3} \ln Z(T,\vec{\mu}),$	化学ポテンシャル	$\mu_u = \frac{1}{3}\mu_B + \frac{2}{3}\mu_Q$
	$(\vec{\mu}), \qquad \vec{\mu} = (\mu_B, \mu_Q, \mu_S)$	$\mu_d = \frac{1}{3}\mu_B - \frac{1}{3}\mu_Q$
• +-1		$\mu_s = \frac{1}{3}\mu_B - \frac{1}{3}\mu_Q - \mu_S$

• キュムラント

$$\chi_{n}^{X}(T,\vec{\mu}) \equiv \frac{1}{VT^{3}} \frac{\partial^{n}}{\partial \hat{\mu}_{X}^{n}} \ln Z(T,\vec{\mu}), \qquad \hat{\mu}_{X} \equiv \frac{\mu_{X}}{T}, \qquad X = B, Q, S$$
$$R_{12}^{X}(T,\vec{\mu}) \equiv \frac{\chi_{1}^{X}(T,\vec{\mu})}{\chi_{2}^{X}(T,\vec{\mu})} = \frac{M_{X}}{\sigma_{X}^{2}} \quad R_{31}^{X}(T,\vec{\mu}) \equiv \frac{\chi_{3}^{X}(T,\vec{\mu})}{\chi_{1}^{X}(T,\vec{\mu})} = \frac{S_{X}\sigma_{X}^{3}}{M_{X}} \quad R_{42}^{X}(T,\vec{\mu}) \equiv \frac{\chi_{4}^{X}(T,\vec{\mu})}{\chi_{2}^{X}(T,\vec{\mu})} = \kappa_{X}\sigma_{B}^{2}$$

 M_X :平均(保存量Xの密度) σ_X :分散 S_X :歪度 κ_X :尖度

より高次のキュムラント程、より相関長の変化に敏感 = 臨界点の周りで大きく変化

格子QCDに基づく数値計算

- QCD: 低エネルギースケールでは非摂動的
- 格子QCD:時空間を格子状に離散化
 QCDの第一原理に基づく非摂動計算が可能
 大規模なモンテカルロシミュレーション

物理量 〇 の期待値

有限密度格子QCD

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}U\mathcal{O}\det M e^{-S_g} \to \frac{1}{N} \sum_{i=1}^N \mathcal{O}_i$$

- ・ クォーク化学ポテンシャル μ_q を導入 \rightarrow 符号問題
 - フェルミオン行列式が複素数になる
 - そのままでは確率解釈できない
 - フェルミオン行列の値は配位ごとに振動してしまい、平均を計算することが困難
- 符号問題への対策
 - μ_aのTaylor展開、純虚数μ_aからの解析接続、再重み付け等
 - 複素Langevin法、Lefschetz thimble法、テンソルネットワーク法等

Taylor展開

• 圧力 P を $\vec{\mu} = 0$ の周りで展開する $\frac{P(T,\vec{\mu})}{T^4} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!\,j!\,k!} \chi^{BQS}_{ijk}(T) \hat{\mu}^i_B \hat{\mu}^j_Q \hat{\mu}^k_S$

- ・ ストレンジネス中性条件 $n_S \equiv \chi_1^S(T, \vec{\mu}) = 0$
- バリオン数密度と電荷密度に対する条件 $\frac{n_Q}{n_S} \equiv \frac{\chi_1^Q(T,\vec{\mu})}{\chi_1^B(T,\vec{\mu})} = \frac{N_P}{N_P + N_N} \quad \text{Au原子の場合 0.4}$

拘束条件

$$\implies \hat{\mu}_Q(T,\mu_B) = q_1(T)\hat{\mu}_B + q_3(T)\hat{\mu}_B^3 + O(\hat{\mu}_B^5)$$
$$\hat{\mu}_S(T,\mu_B) = s_1(T)\hat{\mu}_B + s_3(T)\hat{\mu}_B^3 + O(\hat{\mu}_B^5)$$

$$\begin{array}{c} \swarrow \\ \chi_n^B(T,\mu_B) = \sum_{k=0} \tilde{\chi}_n^{B,k}(T) \hat{\mu}_B^k
\end{array}$$

宇宙史研究センター2021年度 第1回構成員会議・成果報告&交流会

Cumulants of net baryon-number fluctuations from lattice QCD

- ゼロ密度での展開係数の例
 - Highly Improved Staggered Quark作用を用 いて計算
 - $N_{\tau} = 6, 8, 12$ (格子間隔の違い)
 - T_{pc}:クロスオーバー温度
 - バンド:連続極限、またはスプライン
- HRG = Hadron Resonance Gas モデル
 - 相互作用しないハドロンを用いたモデル
 - PDG-HRG:

Particle Date Book に載っているハドロンのみ。

– QM-HRG:

Quarkモデルの予言も含める

HotQCD Collaboration, Phys.Rev.D 101 (2020) 7, 074502

R_{12}

•

HotQCD Collaboration, Phys.Rev.D 101 (2020) 7, 074502

- 温度依存性は小さい •
- 化学ポテンシャルに対して単調増加 ullet

R_{31}, R_{42}

HotQCD Collaboration, Phys.Rev.D 101 (2020) 7, 074502

 $R_{31}^{X}(T,\vec{\mu}) \equiv \frac{\chi_{3}^{X}(T,\vec{\mu})}{\chi_{4}^{X}(T,\vec{\mu})} = \frac{S_{X}\sigma_{X}^{3}}{M_{Y}} \quad R_{42}^{X}(T,\vec{\mu}) \equiv \frac{\chi_{4}^{X}(T,\vec{\mu})}{\chi_{2}^{X}(T,\vec{\mu})} = \kappa_{X}\sigma_{B}^{2}$

- LOではR₃₁とR₄₂はほぼ同じ
- 高次補正はR₄₂の方が約3倍大きい
- *R*₂₁の補正よりはるかに大きい

R_{31}, R_{42} (連続極限)

HotQCD Collaboration, Phys.Rev.D 101 (2020) 7, 074502

• T = 155 – 158 MeV: ゼロ密度におけるクロスオーバー温度の誤差

$$R_{31}^X(T,\vec{\mu}) \equiv \frac{\chi_3^X(T,\vec{\mu})}{\chi_1^X(T,\vec{\mu})} = \frac{S_X \sigma_X^3}{M_X} \quad R_{42}^X(T,\vec{\mu}) \equiv \frac{\chi_4^X(T,\vec{\mu})}{\chi_2^X(T,\vec{\mu})} = \kappa_X \sigma_B^2$$

 R_{51}, R_{62}

- T = 155 158 MeV: ゼロ密度におけるクロスオーバー温度の誤差
- $N_{\tau} = 8 \, \text{or} \text{so} + \text{or} + \text{or$
- ぼぼR₃₁、R₄₂と同様の振る舞い
- 収束がさらに遅い

宇宙史研究センター2021年度 第1回構成員会議・成果報告&交流会

Cumulants of net baryon-number fluctuations from lattice QCD

化学ポテンシャルの小さい領域で 次の関係が成り立ちそう

 $R_{62} < R_{51} < R_{42} < R_{31}$

HRGモデルと R_{12} の比較

STAR実験との比較: R₃₁, R₄₂

- 実験で観測されるのはバリオン数密 度ではなく、陽子数密度
- *R*₃₁は実験と格子QCDの結果両方とも *R*₁₂(つまり、μ_B)依存性が少ない
 → *R*₁₂の比較はあまり意味をなさない
- *R*₃₁、*R*₄₂ともに実験と格子QCDの結果は同様の振る舞いをしている
- *R*₃₁、*R*₄₂の値は実験の方が常に少し 大きい
- → freeze-out温度はクロスオーバー温度 より若干小さい可能性がある

J. Adam et al. (STAR Collaboration), arXiv:2001.02852 T. Nonaka (STAR Collaboration), arXiv:2002.12505 A. Pandav (STAR Collaboration), arXiv:2003.12503.

HotQCD Collaboration, Phys.Rev.D 101 (2020) 7, 074502

実験との比較: R₅₁, R₆₂

- ・ 実験結果と格子QCDの結果は大きく異なる
- 実験結果の2点を同時に満たすためには、 Taylor展開のより高次の寄与(χ¹⁰ 等)が必要

HotQCD Collaboration, Phys.Rev.D 101 (2020) 7, 074502

J. Adam et al. (STAR Collaboration), arXiv:2001.02852 T. Nonaka (STAR Collaboration), arXiv:2002.12505 A. Pandav (STAR Collaboration), arXiv:2003.12503.

- Taylor展開の方法を用いて、バリオン数密度について様々なキュムラントの 比を格子QCDシミュレーションにより計算した
- R₃₁、R₄₂については、実験と格子QCD計算で同様の振る舞いが見られた
 常に実験結果の方が若干大きいことから、freeze-out温度はクロスオーバー温度より 若干小さいことが示唆される
- *R*₅₁、*R*₆₂ については、実験と格子QCD計算で大きく異なる結果が得られた
 Taylor展開のより高次の補正が必要