

University of Tsukuba

新型LGAD検出器が切り拓く次世代飛跡検出器

<u>Koji Nakamrua</u>, Sayuka Kita^A^, Tatsuki Ueda^A^, Ikumi Goya^A^, Kazuhiko Hara^A^ KEK, U.Tsukuba^A^

29nd Mar, 2021

Low gain Avalanche Diode (LGAD)

- Low gain Avalanche Diode (LGAD)
 - General n^+ -in-p type sensor with p^+ gain layer under n^+ implant to make higher Electric Field \rightarrow Good timing resolution.
 - 30ps timing resolution achieved already.
 - Next development
 - Finer electrode separation for spatial resolution

TCHoU symposium

beam

-0.2

What we need for Hadron Collider?

High Luminosity LHC detector
 ITK upgrade detector

- Strip : ~75.5um pitch
- Pixel : 50um x 50um pitch

Is this granularity possible?

- Expected radiation level for 4000fb⁻¹
 - Non Ionizing Energy Loss (NIEL):
 - 3rd layer: 2.8x10¹⁵ n_{eq} /cm² 1st layer : 2.6x10¹⁶neq/cm²
 - Total Ionizing Dose (TID) :
 - 3rd layer : 1.6MGy 1st layer : 19.8MGy

If we have LGAD sensor with this granularity and radiation tolerance, all tracker can be replaced by LGAD!

29nd Mar, 2021

高い位置分解能と時間分解能を併せ持つには

- First prototype with 80um pitch strip (DC-LGAD) → Only 20% of active area has gain
- - Cross talk expected in the n^+ implant \rightarrow Increase resistivity of n^+ implant

29nd Mar, 2021

LGAD検出器の課題と応用

^oulse heig

- コライダー用の飛跡検出器
 - <u> 電極の細分化</u>
 - 80umピッチのストリップ型
 - 50x50umピッチのピクセル型
 - ・信号の大きさとクロストークを抑えることが課題

- <u>放射線耐性</u> →高エネルギー実験用

- 5e15 1MeV中性子/cm2程度の放射線照射で時間分解能が30ps->50psほどに悪化する。
- ・他分野への応用
 - MIP粒子に対して30psの時間分解能の検出 器の高エネルギー実験以外の応用?
 - 可視光に対しても応答のある検出器に改良

29nd Mar, 2021

New samples (4 types of sensors)

• Crosstalk and Readout charge

Assuming
$$Z_{cbulk} >> Z_{Ccp} \cdots Z_{R_{imp}}$$

$$Q = \frac{1}{Z_{R_{imp}} + Z_{C_{cp}}} Q_0$$

- New strip prototype with :
 - 4x higher n+ resistivity
 - 1.5x larger coupling capacitance

- 1. Set a threshold with 99% efficiency, noise rate is less than 1e-3.
- 2. Cross talk distance is 87.4um ~ 1 strip.

Signal size & position resolution is good enough for tracking detector.

29nd Mar, 2021

New challenge ! Pixel detector

- 50um x 50um pitchのピクセルセンサーを制作
 ワイヤーボンドして4x4ピクセルだけ読み出し
 - AC-LGAD pixelセンサーの信号を初めて観測
 - ・大きなクロストーク(or ワイヤーボンドのショート?)

明らかに改善が必要

・ただし、信号の大きさが小さく、S/Nが不十分

29nd Mar, 2021

IV performance after irradiation

- Irradiated sensors at CYRIC (Tohoku university) with 70MeV Proton.
- Operation/Gain voltage get higher by irradiation (almost linearly)
 - Current sensor does not work after $1 \times 10^{15} n_{eq}$ /cm² fluence or more.

29nd Mar, 2021

放射線耐性の改善

- ・ P+ドープ量が高いほど放射線耐性に優れている
 - P+ドープ量が小さいほどGain Voltageが高い。
 - 陽子線照射によってP+層のアクセプタリムーバルで 見かけのドープ量が小さくなりGain Voltageが上がる。
 - 耐圧を超えたときに寿命を迎える

29nd Mar, 2021

- ・ P+ドープ量が高すぎると(特にn+濃度が低い場合)

深さ方向の広がりを小さくする

Poly電極AC-LGAD

- AC電極をAIではなくPoly-si(300um)にすると可 ストリップ型 視光の約50%が透過(TBC)
- 可視光の検出が可能 - 異分野への応用の幅がひろがる
- パッド検出器とストリップ検出器でPoly-si電極 のセンサーを製造済み
- ・ 最初のサンプルを測定(とりあえずベータ線) 通常のAI電極 AC-LGAD Visible light

 n^+

Poly-si 電極 AC-LGAD

Poly-Si

 p^+

- ストリップセンサー(80umピッチ)の信号とクロストークを評価
 - AI電極と比較するためベータ線で信号を観測
 - ・ 信号の大きさはAI 電極と比較して同程度
 - ・クロストークはAI電極と比較して小さく見える。(次ページ)

29nd Mar, 2021

Poly-si電極AC-LGAD ベータ線試験

Crosstalk and Readout charge

$$Q = \frac{Z_{R_{imp}}}{Z_{R_{imp}} + Z_{C_{cp}} + Z_{R_{strip}}} Q_0$$

- Z_{Rstrip}はワイヤーボンドパッドからの距離に 比例 (182Ω/um)

TCHoU symposium

Pulse Height [V]

limp

Tel Nighest 2nd Nighest 2nd Nighest 40 Nighest 41 Nighest 41 Nighest 13 Nighest 40 Nighest 40

R_{strip}

Q

R_{strip}

R_{strip}

Rimp

R_{imp}

まとめ

backup

Motivation

Higgs discovery and measurement by LHC experiment

• <u>"Vacuum"</u>

- "Vacuum" is nothing? Filled by Higgs boson?
- How Higgs boson/field condensed to the "Vacuum"?
- Need to determine/observe the shape of Higgs Potential.

→Observe/measure "Higgs self coupling".

- We only know 4%. What's the others?
- Beyond the Standard Model?

Next generation of Collider experiment

- Need "Higher Luminosity" and/or "Higher Energy"
 - <u>High Luminosity LHC (HL-LHC)</u>
 - 20 times more data (~3000-4000fb⁻¹) at **14TeV**
 - Plan : Start at 2027
 - High Energy LHC (HE-LHC)
 - Use Super Conducting Magnet with Higher Magnetic field(16T)
 - **28TeV** collider in the same tunnel as LHC.
 - Future Circular Collider (FCC-hh)
 - Use Super Conducting Magnet with Higher Magnetic field(16T)
 - **100TeV** collider with 100km tunnel at CERN.
 - International Linear Collider (ILC)
 - 250GeV e+ e- collider in Japan

Inner Tracking system

Only way to solve this so far...

29nd Mar, 2021

Discussio

Discussion

Starteo

Future Semi-conductor Tracking Detectors

Mass spectrum for new particle

- Further finer pitch pixel detector \rightarrow Limited by front end Electronics (min : 50x50 μ^2)
 - In addition to spatial resolution, **Timing resolution helps!**

→New generation of Tracking detector should have timing information for all hits!

- Tentative Requirement
 - 30ps timing resolution
 - ~o(10)um spatial resolution (Pixel type).
 - (hadron collider) ~o(10¹⁶)n_{eq}/cm² radiation tolerance

First AC-LGAD by HPK

29nd Mar, 2021

TCHoU symposium

Parameter space for doping concentration

Lower Operation Voltage

Radiation tolerance

Measurement setup and signal observation

digitizer

Lab setup

LV

HV

- Designed high speed amplifier board.
- Signal recorded by CAEN DT5742 digitizer
- ⁹⁰Sr β lay source

Collimator

Amp. board

Sensor

BOX

Triggered by Scintillator (MPPC readout)

Scinti

Scintillator / MPPC 29nd Mar, 2021 **TCHoU symposium**

Radiation Effect in LGAD sensor

- The same as general *n*⁺-in-*p* sensor
 - Bulk damage (NIEL) : Lattice defect.
 - Surface damage(TID) : Positive charge @ SiO₂-Si
- In addition to this "Accepter Removal"
 - *p*+ (Boron) accepter change to doner level

Summary and plan

29nd Mar, 2021

Photo

Leakage current vs Bias voltage

29nd Mar, 2021

How to reduce "Accepter Removal" effect?

29nd Mar, 2021

Radiation Tolerance

Radiation environment

- Expected radiation level for 4000fb⁻¹
 - Non Ionizing Energy Loss (NIEL):
 - 3^{rd} layer: 2.8x10¹⁵ n_{eq} /cm² 1st layer : 2.6x10¹⁶ neq/cm²
 - Total Ionizing Dose (TID) :
 - 3rd layer : 1.6MGy 1st layer : 19.8MGy *

Accepter removal

Test beam in Feb 2021 @ Fermilab

Fermilab Test Beam Facility (FTBF)

120GeV proton beam

Strip Detector based Telescope : ~15um pointing resolution

Readout by Ocilloscope

LeCroy WR8208HD scope 12bit, 10GSa/s, 2GHz 8 channel

Timing reference Detector

PHOTEK

MCP photomultipliers (PMT140) 450ps FWHM with 5e3 Gain **~5ps timing resolution** (SPEC: Multi-photon jitter below 10 ps)

29nd Mar, 2021

Time resolution measurement @ testbeam

- Used PHOTEK : MCP PMT140 as a timing reference detector
 - Including 5ps PMT140 time resolution (<1% effect)

Very fresh results : Obtained 30-40ps time resolution for a couple of types of sensors

Efficiency and signal sharing @ testbeam

