Neutrino-less Double Beta Decay Experimental Review

大阪大学核物理研究センター 梅原さおり Umehara, Saori RCNP, Osaka University umehara@rcnp.osaka-u.ac.jp

Contents

- Double beta decay
 - [Metter dominated universe] and [double beta decay]
 - Test of Majorana nature
- Double beta decay measurements
 - Half-life measurement
 - Requirement for measurements
 - Projects for double beta decay measurements
- CANDLES project
 - Current operating detector system : CANDLES III
 - Next detector system
- □ Summary

[double beta decay] and [matter dominated universe]

- Double beta decay : Key of mystery of [matter dominated universe]
 - Early universe : same amount of matter and anti-matter
 - But Current universe : asymmetry between matter and anti-matter
 - Leptogenesis: Explain by [Majorana nature] and [heavy neutrino]
 - We can test [Majorana nature] by 「neutrino-less double beta decay」
 - Majorana nature of neutrino : particle = anti-particle

■ **Test of Majorana nature** ■ Another way for test of Majorana nature : for example . . .

Neutrino beam experiment

Double beta decay measurement

Double beta decay

Decay rate : very rare event $2\nu\beta\beta$: half-life $T_{1/2}^{2\nu\beta\beta}$ 10¹⁸ ~ 10²¹ year $0\nu\beta\beta$: half-life $T_{1/2}^{0\nu\beta\beta}$ 10²⁶ year ~ $\frac{1}{T_{1/2}^{0\nu\beta\beta}} \propto G_{0\nu}|M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$

Double beta decay measurement

Double beta decay measurement : by detection of two beta-rays

Energy spectra of double beta decays

- Good energy resolution to reduce BG from $2\nu\beta\beta$
- High purity materials and Particle identification

Double beta decay

Neutrino-less double beta decay

- Key of mystery of the matter dominated universe
- Majorana nature ($\nu \leftrightarrow \overline{\nu}$)

Lepton number non-conservation

 $T_{1/2}^{0\nu\beta\beta} \propto \frac{1}{\langle m_{\nu} \rangle^2}$

	Two neutrino double beta decay	Neutrino-less double beta decay
Sum energy of electron	continuous	Mono energy
Half-life	10 ¹⁸ ~ 10 ²¹ years	10 ²⁶ years∼
experiments	Observed	Not observed

- Requirements for measurement
 - Long half-life
 - \rightarrow very rare decay, need low background condition,
 - To avoid background from $2\nu\beta\beta$ decay
- Umehari \rightarrow good energy resolution

Double beta decay source

Backgrounds

Background condition for double beta decay measurements

Low natural radioactivity : in U-chain, Th-chain

■ required level ~ 1 µBq/kg ⇔ ordinary materials 1~100Bq/kg Ordinary materials

Detector technology

Many projects have been carried out so far and are proposed.

Target nuclei in liquid scintillator

KamLAND-ZEN

- Large detector for liquid scintillator
 - 13m liquid scintillator area, 2-3.5m Xe area
- Large target mass : 350kg(KamLAND-Zen400) → 720kg
- Energy resolution : 4.5%(σ) @ $Q_{\beta\beta}$
- Result : T_{1/2} > 1.07 x 10²⁶ year, 60-160meV
- Backgrounds:2vββ, radioactivity in balloon, liquid scintillator Y. Gando et al.,

Ge semiconductor detector

GERDA, Majorana, LEGEND

GERDA

- Ge detectors immersed in instrumented Liquid Ar
- Good energy resolution : < 0.2%(FWHM) @ $Q_{\beta\beta}$
 - ■→low background condition
- Detector mass: 44.2kg
- Result : T_{1/2} > 1.8 x 10²⁶ year, 79-180 meV
- Backround : 5.2 x 10⁻⁴ count/keV/ka/vear (lowest)
 - M. Agostini et al., PRL 125(2020)252502

Scintillating bolometer

CUORE(bolometer), CUPID, AMoRE, CANDLES etc.

- $\Box CUORE(bolometer) \rightarrow CUPID(scintillating bolometer)$
 - energy resolution : 0.3 %(FWHM) @ $Q_{\beta\beta}$
 - Iow background condition
 - TeO₂ bolometer (not scintillating bolometer)
 - Detector mass: 206kg of ¹³⁰Te,
 - Result : T_{1/2} > 3.2 x 10²⁵ year, 75-350meV
 - background : 1.49 x 10⁻² counts/keV/kg/year

 α -rays and γ -rays from ²⁰⁸TI(2.6MeV)

CANDLES

@Kamioka Observatory

Detector system for Double beta decay : CANDLES III Main detector : CaF₂ scintillator light censer

Inside photo of CANDLES

CaF₂ scintillators

Double beta decay of ⁴⁸Ca

Why ⁴⁸Ca ? : advantage of ⁴⁸Ca
 higher Q_{ββ} value (4.27MeV) ...
 →low background
 because Q_{ββ} value is higher than BG
 E_{max}=2.6MeV(²⁰⁸TI, γ-ray)
 3.3MeV(²¹⁴Bi,β-ray)

- But small natural abundance 0.19%
- Double beta decay of ⁴⁸Ca by using CaF₂
 - CANDLES system
 - CANDLES III : current detector system
 - Enrichment + scintillating bolometer : for next system

CANDLES III

Ref : K. Nakajima et al, Astroparticle Phys, 100, (2018), 54–60 Ref : T. Iida et al, Nucl. Inst. Meth. A986, (2021), 164727

- \Box CaF₂ scintillator (CaF₂ (pure))
 - 305kg (96modules × 3.2kg)
 - ⁴⁸Ca:350g
- □ Liquid scintillator (LS)
 - 4π active shield(2m³)
- 62 Large photomultiplier tube
- Shielding system
 - Pb : 10-12cm
 - B₄C sheet : 5mm
 - CANDLES tank(stainless steel)
 - Pb(γ-ray shield)
 - B sheet (neutron shield)

Detector construction:shielding system

Shielding system

Pb shield, B₄C sheet

Pb total mass : ~50ton

Umehara, Saori, 11th Sep. 2021, TGSW2021

Work in the main tank for setting Pb bricks

Detector construction : Crystals

By using high purity wire, acrylic frame, sleeves etc.

CaF₂ setting

Laser for height adjustment for CaF₂

CaF₂ modules Before installation in CANDLES

In a clean wear

To avoid dust

Umehara, Saori, 11th Sep. 2021, TGSW2021

Result

Result of measurement for 130days Result with 21 high purity CaF₂

	結果	E
0vββ efficiency	0.36(21CaF ₂)	
Num. of eve.(exp)	0	
Expected BG	1.02	
Half life of ⁴⁸ Ca	>5.6 × 10 ²² year	
Sensitivity	2.8 × 10 ²² year	
Ref : Phy * comparable to most st ELEGANT VI measurement time : 4 half life limit : 5.8×1	ys. Rev. D103, (2021), 0920 ringent limit of ⁴⁸ Ca 947kg • day(2 years <) 0 ²² vear	08

- *Achieved background rate
- < 10⁻³ events/keV/year/(kg of ^{nat}Ca)
- comparable to lowest background measurements

Umehara, Saori, 11th Sep. 2021, TGSW2021

S ____ 2vββ Energy spectrum and

> 10 **L** 3.6

3.8

experimental data

γ-ray from N capture

contamination in CaF2

simulation(total)

4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 Energy(MeV)

Future CANDLES

Next step of double beta decay measurement

	CANDLES III	Next detector system
⁴⁸ Ca Abundance	0.187%	50%
⁴⁸ Ca Weight	0.35 kg	600 kg ~
Energy Resolution	6%	1.0% (required)
$\langle m_{ m v} angle$ sensitivity	500meV	~5 meV
Feature	Cooling CaF2 Low BG	Massive ⁴⁸ Ca & high energy resolution $IH \Rightarrow NH$

Large amount of ⁴⁸Ca

Current CANDLES :

limited by mass of ⁴⁸Ca

- Higher energy resolution
 - **To reduce 2\nu\beta\beta events**

Umehara, Saori, 11th Sep. 2021, TGSW2021

Next detector system:enrichment

□ ⁴⁸Ca

Natural abundance is low: 0.19%

 \rightarrow We can improve the detector sensitivity by enrichment

But enrichment of ⁴⁸Ca is difficult

New enrichment techniques

Crown-ether, laser enrichment, Electrophoresis

Fukui Univ.: H.Niki, I.Ogawa

Next detector system: scintillating bolometer

- **□** Expected BG: $2v\beta\beta$ events, α-rays
- bolometer: good energy resolution
 - For reduction of BG affects from $2\nu\beta\beta$ events
- Scintillating bolometer: good PI ability
 - For reduction of BG affects from α-ray

Summary

Neutrino-less Double beta decay

- Crucial process for nuclear/particle physics
- Testing of Majorana nature
- Very rare decay : half-life > 10²⁶ years

not observed yet

- Double beta decay measurements
 - Many projects have been carried out and proposed
 - Requirements : low background condition
 - Many techniques are applied
 - Scintillating bolometer, enrichment
 - **To observe 0\nu\beta\beta with next-generation experiments**