QCD Phase Structure and Relativistic Heavy-Ion Collisions

Bedanga Mohanty

National Institute of Science Education and Research India

Tomonaga Center for the History of the Universe (TCHoU)

11th September 2021

1/24

US NP long range plan, 2015

QCD phase diagram

- Conserved quantities and temperature (T)
- Baryon number μ_B
- Electric charge μ_Q small
- Strangeness ~ μ_S small

Relativistic Heavy Ion Collisions

Mapping QCD phase diagram and Relativistic Heavy Ion Collisions

- Nature of transition
- Critical point
- Properties of the phases

Accessing phase diagram of QCD in heavy-ion collisions: varying collision energy changes the T and μ_B 4/24

Program: Beam Energy Scan

Requirements

- Uniform & wide acceptance
- Excellent particle identification
- Good momentum reconstruction
- Centrality with high resolution
- Large statistics

SN0493 : Experimental Study of the QCD Phase Diagram & Search for the Critical Point: Selected Arguments for the Run-10 Beam Energy Scan

SN0598 : Studying the Phase Diagram of QCD Matter at RHIC

Tool - Higher moments

•
$$C_2 \sim \xi^2$$
 $C_4 \sim \xi^7$
• $\frac{\chi_q^{(4)}}{\chi_q^{(2)}} = \kappa \sigma^2 = \frac{C_{4,q}}{C_{2,q}}$ $\frac{\chi_q^{(3)}}{\chi_q^{(2)}} = S\sigma = \frac{C_{3,q}}{C_{2,q}}$
PRL105, 22303(10); *ibid*, 112, 032302(14) PLB633, 275(06); PRL102, 032301(09); PLB695, 136(11); PLB696, 459(11)

Measurements and Lattice QCD

Assumptions

- Thermalization
- Grand Canonical
 Ensemble, V/T³ > 1
- Net-proton \equiv Net-Baryon
- Acceptance
- Lattice artefacts: mass, volume, action, continuum limit, finite chemical potential

 χ_6/χ_2 or $C_6/C_2 < 0$

Cross over – experimental measurements

First order transition – theory expectation

- (1) Multiplicity distribution bimodal (contribution from two phases)
 (2) Proton factorial cumulants
- $(\kappa_{n's})$ increases in magnitude with increasing order and flips sign

(3) $P(N) = (1 - \alpha)P_a(N) + \alpha P_b(N)$

Phys. Rev. C 98 (2018) 5, 054901 Phys. Rev. C 100 (2019) 5, 051902

Nonmonotonic variation of dv_1/dy with collision energy

PHYSICAL REVIEW LETTERS 120, 062301 (2018) 16/24

(1)QCD critical point - Characteristic "Oscillating pattern"(2) Exact shape depends on the location of freeze-out with respect to the location of CP - Critical Region (CR)

PRL 102, 032301 (2009) PRL 107, 052301 (2011) 17/24

QCD critical point – experimental measurement

QCD critical point – experiment vs. non-CP models

QCD critical point – future measurements

STAR@RHIC collider mode					STAR@RHIC fixed target mode				
Energy (GeV)	Events (10 ⁶)	BES II / BES I year	μ _B (MeV)	T _{ch} (MeV)	Energy (GeV)	Events (10 ⁶)	BES II	μ _B (MeV)	T _{ch} (MeV)
200	238	2010	25	166	7.7	112/50	2020/	420	140
62.4	46	2010	73	165			2019		
54.4	1200	2017	83	165	6.2	118	2020	487	130
39	86	2010	112	164	5.2	103	2020	541	121
27	560 /30	2018 /2011	156	162	4.5	108	2020	589	112
19.6	538 /15	2019 /2011	206	160	3.9	117	2020	633	102
14.5	325 /13	2019 /2014	264	156	3.5	116	2020	666	93
17.3*	250	2021	227	158	3.2	200	2019	699	86
11.5	230 /7	2020 /2010	315	152	3.0	259	2018	720	80
7.7	100 /3	2021 /2010	420	140	3.0*	2000	2021	720	80

*Proposed

 T_{ch} and $\mu_B:Phys.$ Rev. C 73 (2006) , 034905

High statistics data has been collected over a wide μ_B range

20/24

Experimental program for high baryon density matter

AAPPS Bull. 31 (2021) 1

21/24

Summary

• Programs to carry out systematic study of the phase structure of QCD phase diagram through relativistic heavy ion collisions underway

- Higher moments measurements seem to follow QCD thermodynamics
- Experimental evidences of signatures related to critical point observed at a 3 σ level
- Lattice QCD clearly shows cross over at $\mu_B = 0$.
- Experimental indications of cross over at μ_B = 20 MeV observed at < 2 σ level
- Hints of change of equation of state at high μ_B
- Need to continue the dedicated programs in the high baryon density regime to unfold the QCD phase diagram.
- Experiments: STAR@RHIC BES-II, CBM@FAIR, NICA@JNIR, SHINE@CERN-SPS, J-PARC-HI and CEE-HIAF complementary to each other

Acknowledgements

All members of the STAR Collaboration, F. Karsch & S. Gupta. Thanks to the organizers for the invitation.

