MKID Camera for Nobeyama 45-m Radio Telescope

Makoto Nagai Advanced Technology Center (ATC), National Astronomical Observatory of Japan (NAOJ)

Tsukuba Global Science Week 2021, Session 4-11, 11th Sep. 2021

Galaxy Evolution and Star Formation

- How did galaxies form and evolve in the Universe?
- How are stars forming in the local Universe?

Credit: NASA/JPL-Caltech/Univ. of Wisconsin

Radio Continuum Emission from ISM & Galaxies

Nobeyama MKID Camera for 100-GHz Band

Observation Frequency	90110 GHz (Center : 100 GHz)	
Field-of-View	~ 3 arcmin	
Polarization	linear single polarization	
Detector	Microwave Kinetic Inductance Detector (MKID)	
Cold Optics	Refractive optics with two Si lenses	
No. of Pixels	109 pixels	
Focal Plane Temperature	< 200 mK	
Beam Size	~ 16.5'' @100 GHz	
Sensitivity (NEFD)	<30 mJy √s (Goal) <100 mJy √s (Minimum)	

UTsukuba		
Tom Nitta ★		
Yosuke Murayama ★		
Hiromu Miyazawa ★		
Ryohei Noji ★		
Miwa Aoki		
(alumni grad/undergrad students)		
Nario Kuno		

NAOJ Facilities

Nobeyama Radio Observatory (NRO)

Advanced Technology Center (ATC)

NAOJ Makoto Nagai	JAXA Yutaro Sekimoto	UEC Takashi Noguchi
Hiroshi Matsuo		
Hitoshi Kiuchi	Saitama U.	Kwansei Gakuin U
Wenlei Shan	Masato Naruse	Naomasa Nakai

LEKID Array

Institut Néel Alessandro Manfardini Johannes Goupy Martino Calvo

LPSC Juan Macias-Perez Andrea Catalano

★ main members for the 3rd commissioning operation

- Resonator of supercondicting films coupled to a throughline
- Suitable for large detector arrays
 - O high sensitivity
 - O frequency-domain multiplexing

MKID Readout

- Measures transmission S_{21} both amp. & phase.
 - O generates probe tones (PTs), acquires returned PTs
- Digital signal processing
 - O Fast Fourier Transform Spectrometer (FFTS)
 - O Direct down conversion (DDC)
 - O FFTS + frequency sweeping (FS)

Fequency sweeping scheme (Nagai+18)

"multi-tone VNA"

Antenna-coupled KID Design

8

Array mask pattern

Fabrication of NbTiN/Al-hybrid MKID

@ ATC clean room

Fabrication of NbTiN/Al-hybrid MKID

Fabrication of NbTiN/Al-hybrid MKID

Focal Plane Array

- MKID: NbTiN/Al-hybrid, 109pixels, 3-inch Si wafer
- Si lens array: anti-reflection (AR) (Stycast & glass beads)
- Device holder: made of Nb, closed

Focal plane array

Camera Cryostat

13

AR on Si lens

Optics design

NbTiN/Al-hybrid MKID: Lab measurements

- Optical loads
 O Hot load (room temp.)
 O Cold load (liquid N₂, 77 K)
 O Mirror
 - → Responsivity: ~1.5 kHz/K

Bandpass obtained w/ FTS (Hikawa20)

15

Beam position determined by knife-edge method

Advantage of hybrid MKID (Murayama21, in prep.) 16

Commissioning on NRO 45-m Radio Telescope

- 1st: Dec. 2016—Jan. 2017, Al MKID, 37 pixels
- 2nd: May—Jun. 2018, Al MKID, 108 pixels
- 3rd: May—Jun. 2021, NbTiH/Al-hybrid MKID, 108 pixels

Measurement of Atmosphere (skydip)

Measurement of Planets

Noise Equivalent Flux Density (NEFD) of a Pixel 20 NEP plot of commissioning 2021 NEP plot of commissioning 2018

from Nitta's slide

Sensitivity of each pixel improved by factor ~7

Efficiencies of Camera+Telescope

from Nitta's slide

21

Camera's coupling to the telescope became better, and is not much worse than other receivers on the telescope.

- The instrument works successfully.
- The sensitivity is improved as expected.
- The coupling btw camera & telescope became better.

To do

- O Beam map, beam footprint
- O Map making
- O Map integration (map of diffuse source)

LEKID Array on Camera

23

Beam position determined by knife-edge method

Conclusions

The MKID camera had the 3rd commissioning in the last observation season.

- We'd like to confirm the camera sensitivity under the winter sky (optical depth ~0.1) in the next session.
- The MKID camera needs further improvement to achieve the photon noise limit on Nobeyama site.
 - O MKID noise
 - O Stray light
 - O Readout efficiency
- Both technologies (antenna-coupled KID & LEKID) are important.
- We'd like to establish MKID camera operation in Japan, to open the way to next-generation radio telescopes.

Reference

- 1. Nagai et al., "Data Acquisition System of Nobeyama MKID Camera", Journal of Low Temperature Physics, Volume 193, Issue 3-4, pp. 585-592 (2018)
- 2. Nagai et al., "Resonance Spectra of Coplanar Waveguide MKIDs Obtained Using Frequency Sweeping Scheme", Journal of Low Temperature Physics, Volume 199, Issue 1-2, p.250-257 (2020)

Acknowledgment KAKENHI (Kiban A: 26247019, Kiban C: 19K03920) LEKID arrays are provided by the NIKA2 team.