|| Sept, 202|

TGSW2021 (Universe Evolution and Matter Origin) @ Online

Accelerator-based physics experiments pioneered by superconducting TES microcalorimeters

Shinji OKADA (Chubu Univ.)

HEATES project

High-resolution Exotic Atom x-ray spectroscopy with TES

X-rays

negative charged μ⁻ : Muon π⁻ : Pion K⁻ : Kaon ...

named after microcalorimeter being a **heat** measuring device

TES microcalorimeter

(Cryogenic detector) having high resolution

Z+ nucleus T

HEATES project

High-resolution Exotic Atom x-ray spectroscopy with TES

Collaboration (Muonic atom)

J-PARC MLF 2019MS01 collaboration (for 2020-Jan run)

Shinji Okada	Chubu Univ.		Yuto		Ichinohe	Rikkyo Univ.	Japan
Pietro Caradonna	IPMU		Shinya		Yamada		
Miho Katsuragawa			Yasushi		Kino	Tohoku Univ.	
Kairi Mine			Kenichi		Okutsu		
Tadayuki Takahashi			Rvota		Havakawa	Tokyo Metropolitan Univ.	
Shinichiro Takeda			Hirotaka		Suda		
Tadashi Hashimoto	JAEA		Hidevuki		Tatsuno		
Takahito Osawa			Paul		Indelicato	CNRS	France
Shin Watanabe	JAXA		Nancy		Paul		
Naritoshi Kawamura	KEK	Japan	Douglas	٨	Ronnott		US
Yasuhiro Miyake			Douglas	А. Р	Deriego		
Kouichiro Shimomura			wiiiiam	В.	Doriese		
Patrick Strasser			Malcolm	S.	Durkin		
Soshi Takeshita			Joseph	W.	Fowler		
I Huan Chiu			Johnathon	D.	Gard		
Kazuhiko Ninomiya	Osaka Univ.		Gene	C.	Hilton		
Hirofumi Noda			Kelsey	М.	Morgan		
Toshiyuki Azuma	RIKEN		Galen	C.	O'Neil		
TadaAki Isobe			Carl	D.	Reintsema		
Sohtaro Kanda			Dan	R.	Schmidt		
Takuma Okumura			Daniel	S.	Swetz		
Yasuhiro Ueno			Joel	N.	Ullom		

Particle, Nuclear, Hadron, Atomic physicists + Astro physicists + TES experts

Contents

- 1. Introduction
- 2. What's TES microcalorimeter
- 3. Experiment
- 4. Results of muonic Neon experiment
- 5. Serendipity
- -> interesting phenomena discovered by chance during detector study
- 6. Summary

1. Introduction

Muonic atom

Strong electric field

Internal electric field $\propto Z^3$

strong electric field @ heavier atoms \rightarrow still lower than Schwinger limit

Internal electric field : x 200²

Avoiding nuclear-size effect

- ✓ But, in the Lower "n" (principal quantum number) state, nuclear size effect (overlapping with nucleus) become dominant.
- Carefully choose X-ray transition into the energy level where the nuclear size effect is negligible but having significant QED effect

Muonic Ne 5→4 X-ray

Low pressure gas target

Problems so far

1. Electron refill

- To avoid rapid refilling of electrons from the surrounding atoms, a low-density gas target (e.g., as low as 0.1 atom) is essential
- However, it is experimentally difficult to efficiently stop muons in a low-density target due to their large momentum distribution (Δp/p ~ several %) via traveling pion decay.

2. X-ray detector :

need both "high resolution" and "large effective area"

This project

1. High-intensity low-energy negative muon

- ➡ world strongest pulse low-energy µ- source @ J-PARC MUSE (muon facility)
- isolated muonic atoms in vacuum is available by using
 low-density gas target

2. Novel superconducting detector

- an array of NIST's multi-pixel TES microcalorimeters
- combining both "high resolution" and "large effective area"

2. What's TES

- 1. incident particles absorbed
- 2. Energy $\Delta E \rightarrow$ Phonon

3. Tiny temperature rise is measured by a highly sensitive temperature sensor **TES**

Reference : Bennet et al., Rev. Sci. Instrum. 83, 093113 (2012)

Adiabatic Demagnetization Refrigerator (ADR)

Cooled down to 70 mK with ADR & pulse

<u>102 DENALI</u>

Pulse Tube ADR Cryostat

Vacuum Jacket Size 33 cm X 22 cm X 66 cm Tall

Experimental Volume 24 cm X 15 cm X 14 cm Tall

1st Stage Cooling Power 25 W @ 55 K

2nd Stage Cooling Power 0.7 W @ 4.2 K

GGG Cooling Capacity **1.2 J @ 1 K** (< 500 mK @ GGG)

ADR Base Temperature <50 mK

FAA Cooling Capacity 118 mJ @ 100 mK

TES

chip

TES array (NIST)

√ 1 pixel : 300 x 320 um² (~ 0.1 mm²)

✓ Mo-Cu bilayer TES

✓ 4-µm-thick Bi absorber (eff.~ 85% @ 6 keV)

✓ <u>240 pixels</u>
 ✓ 23 mm² eff. area

small pixel size -> multi-pixel array

NIST

photo credit:

D.R. Schmidt

Time division SQUID multiplexing (TDM)

to reduce the number of wires running to the low-temperature stages of the cryocooler -> 240 pixel readout

Randy Doriese (NIST), NSLS Users Meeting: May 21, 2008

Example of pionic atom experiment

3. Experiment

J-PARC

Japan Proton Accelerator Research Complex

Muon beamline

Experimental setup

4. Results

Energy calibration

Continuous X-ray irradiation during experiment

Energy resolution ~ 5 eV @ 6.9 keV

Energy vs. Timing (muon arrival time)

Muonic-atom X-ray spectrum

Effect of charged particle

Charged particles scattered at the timing of the muon beam may hit the detector.

Muonic Ne atom $5 \rightarrow 4 @ 0.1$ atm

Next target?

TES under develop and the method $\Delta E = \sqrt{\frac{k_B T^2 C}{\alpha}} 41$

		$\alpha \equiv$	$= \frac{d \ln R}{d \ln T} \qquad \Delta E = \sqrt{\frac{k_B T^2}{\alpha}}$	$\overline{\underline{C}} E_{max} \sim CT_C / \alpha \bigg]$
Experiment purpose	present	Gamma-ray TESs	OED TESs	Future TESs
Energy	15 keV	130 keV		20 keV
Lines of interest	μ-Ne @ 6 keV	μ-C @ 75.3 keV μ-N @ 102.7 keV μ-O @ 134.35 keV	$E = \sqrt{\frac{E}{\mu - Ar Q m \mu} \frac{E}{\mu - Ar Q m \mu} \frac{E}{$	α μ-Li @ 18.70 keV μ-C @ 18.83 keV
Saturation energy	20 keV	150 keV E	$max \sim CT_C^{70}$ keV	50 keV
Absorber material	Bi	Sn foil	Au/Bi	Au/Bi
Absorber thickness	4 um	120 ~ 250 um	3 um / 15 um	1.5 um / 15 um
Absorber area	320 um x 305 um	1.3 mm x 1.3 mm	700 um x 700 um	700 um x 700 um
Pixel number	240	96	150	150
Total collection area	23 mm ²	160 mm ²	70 mm ²	70 mm ²
Absorption at 45 keV	-	92%	20%	17%
Absorption at 100 keV	-	26%	i i i	e e
ΔE (FWHM)	5 eV @ 6 keV	40 eV @ 130 keV and below; 60 eV @ 150 keV	20 eV @ 40 keV and below	8 eV @ 20 keV and below; Unknown @ 40 keV

✓ New cryostat, readout system \checkmark Available in a few years (for μ -atoms) ✓ Multiple units can be installed

5. Serendipity

during TES detector study

Serendipity !

Serendipity !

Thanks to the high-resolution detector, this structure could be observed.

Fe behaves like Mn with a charge of -1

6. Summary

Summary & Outlook

• Muonic atom is an ideal probe to explore QED under extremely strong electric fields

Introduced TES microcalorimeters

Successfully conducted muonic Ne X-ray measurement with 0.1 atm gas target under an intense pulsed muon beam

Towards further measurements of higher atomic number Z (having a larger contribution of QED effect), a new TES spectrometer having the energy range of < 50 keV and < 130 keV is developing.

Serendipity] fortunately observed dynamics of the muon atom formation process for the first time