

Design and Construction of Pixel Detectors for the ATLAS ITk at HL-LHC

Koji Nakamura (KEK) on behalf of ATLAS group

26 November 2021

High Luminosity LHC (HL-LHC)

- High Luminosity LHC (HL-LHC) start in 2027 to take 10 times higher integrated luminosity (3000-4000fb⁻¹) in 10 years.
 - Center of Mass Energy will be 14TeV
 - Instantaneous luminosity after leveling is ~5x10³⁴cm⁻²s⁻¹
 - Requirement : No major degradation of performance upto 7.5x10³⁴cm⁻²s⁻¹ instantaneous luminosity with 200 multiple interaction per bunch crossing.

Physics motivation

- Why we need $300 \rightarrow 3000 \text{ fb}^{-1}$?
 - New Physics
 - Especially for the BSM by Weak interaction
 - Mass degenerated DM candidate (Long Lived) ex. Δm=160MeV Pure Wino 95% C.L. lower limit 400GeV→ 800GeV # of expected signal @ 800GeV : 11.9event
 - Higgs measurement
 - Precise measurement of Higgs couplings
 - Observation of rare decay ($H \rightarrow \mu \mu$)
 - Higgs tri-linear coupling (self-coupling) Observe Higgs pair production :

HL-LHC is the only experiment we see these physics in next 15 years

26 November 2021

ATLAS inner tracker(ITK) project for HL-LHC

- Larger coverage area
 - Pixel : current 2.7m² → upgrade 8.2m²
 - − Strip : current 34m² → upgrade 165m²
- Higher Forward coverage
 - Current $\eta < 2.5 \rightarrow$ upgrade $\eta < 4.0$
 - Better Pileup removal & background rejection
- Mechanics : inclined
 - Reduce material
 - Higher tracking resolution.

Extended Layout

Inclined Layout

26 November 2021

26 November 2021

26 November 2021

TCHoU meeting

26 November 2021

TCHoU meeting

Requirement : Pixel Detector

26 November 2021

Requirement : Radiation tolerance

- Expected radiation level @ 4000fb⁻¹
 - Non Ionizing Energy Loss :
 - L2 2.8x10¹⁵ neq /cm² L0 2.6x10¹⁶neq/cm²
 - Total Ionizing Dose :
 - L2 1.6MGy L0 19.8MGy

L0, 1 can be replaced @ 2000fb-1

26 November 2021

Requirement : Front-End ASIC

<u>ASIC size</u>: 20mmx20mm \rightarrow limited by ASIC fabrication process (Yield) Pixel region **Pixel size** : 50umx50um \rightarrow limited by the size of threshold DAC (5bit). 1px TSMC 65nm fabrication process. Data rate / 20mmx20mm (400x384px) 4px 4 bit Time-over-Threshold (ToT) based ADC. Equivalent Noise Count(ENC) ~50e, minimum in-time threshold 600. 384px (phi) Define **Pixel region** with 1x4 pixel and readout together. Readout 32bit / region 16 bit (7bit+9bit) address + 4 x 4 bit ToT (Less data >1.6hit/region.) Data Rate = reg-hit/chip * Nbit * f_{trig} * N_{chip} Layer0 : 100 * 32bit * 1MHz ~ 3.2Gbps Layer3 : 5 * 32bit * 1MHz * 4(quad) ~ 0.6Gbps → 1.28Gbps x 4 lane readout (4 lane for L0 but less lane for outer) <<hits>/region> 400px (eta) : 100reg <re>

 <regions/chip>

 80

Ttbar (@ PU=200 Layer 0 ATLAS Simulation Laver 1 Laver 1 ITk Inclined Duals Laver 2 Laver 2 Barret Layer 3 tt. <u> = 200 Layer 3 Layer 4 Layer 4 ATLAS Simulation Pitch : z-axis ITk Inclined Duals Barrel tī, <u > = 200 thick 60 thick 🔬 🛄 1200 1400 1200 1400 200 400 600 800 1000 z [mm] z [mm]

26 November 2021

Power dissipation / consumption

- Power dissipation
 - Sensor power : < 50mW/cm²
 - After radiation damage : 45uA/cm²@600V @-25°C
 - FE ASIC < 0.7W/cm² (12W / 4chip module)
 - Requirement from cooling power
- Current consumption
 - Quad chip module : <6A \rightarrow 1.5A/chip
 - Requirement from Power supply
 - 1.8V 1.5A /4cm² =0.67W/cm²
- Powering scheme:

Leakage current after radiation damage

	$\Phi = 2 \times 10^{15} n_{eq} / cm^2$	$\Phi = 5 \times 10^{15} n_{eq} / cm^2$
Total leakage	$< 25 \ \mu A/cm^2 @ 400V (Lot-1)$	$< 45 \ \mu A/cm^2 @ 600V (Lot-1)$
current	$< 20 \ \mu A/cm^2 \ aarrow 300V (Lot-2)$	$< 35 \ \mu A/cm^2 @ 400V (Lot-2)$
Breakdown	>400 V (Lot-1)	>600 V (Lot-1)
voltage	>300 V (Lot-2)	>400 V (Lot-2)
Hit efficiency at	> 07.0% at 400 V (Lat 1)	>07.0% at 600 V (L at 1)
orthogonal	> 97.0% at 400 V (Lot-1)	>97.0% at 000 V (Lot-1)
incidence	~ 97.0% at 500 V (L01-2)	~97.0% at 400 V (LOI-2)

*Lot1 150um Lot2 100um

26 November 2021

Semiconductor tracking detector

- Basic principle :
 - Backside is negative bias and n+ is ground.
 - Detect electron-hole pairs created by ionizing energy loss from MIP particle.
- Strip detector
 - n+ can easily ground at the end of strip.
 - Readout usually via "wire bonding" strips to the readout ASIC.

Semiconductor tracking detector

- Basic principle :
 - Backside is negative bias and n+ is ground.
 - Detect electron-hole pairs created by ionizing energy loss from MIP particle.
- Strip detector
 - n+ can easily ground at the end of strip.
 - Readout usually via "wire bonding" strips to the readout ASIC.
- Pixel detector (new technology)
 - Electrode placed two dimensionally.
 - To ground all pixels, high resistivity biasing grid is necessary.
 - Readout ASIC is connected by "bumpbonding".

Our development is together with Hamamatsu Photonics K.K (HPK)

26 November 2021

Final Sensor design

- Basic Sensor structure has been developed during R&D
- Final pitch (50umx50um) pixel size and full size (40mmx40mm) sensors are produced.
- Full size sensor and ASIC are produced in 2019.
 - Now sensor pre-production is ongoing with final design.
 - Quality control and Quality Assurance are prepared.

26 November 2021

Irradiation and Testbeam

- CYRIC@Tohoku Univ.
 - An irradiation facility with 70MeV proton beam (~1µA beam current).
 - 3-5 hours for 3x10¹⁵n_{eq}/cm² irradiation with (600nA beam)
 - This allows 2-3 pixel modules with Al plate at the same time(3% E loss/module).
 - Operated at -15°C temprature with dry N_2 gas.
 - Scanning over full pixel surface at irradiation.
- Testbeam
 - Extremely important to test device performance
 - Efficiency/Noise monitoring during production
 - Testbeam facility
 - CERN SPS : 120GeV π + beam
 - DESY : 4-5GeV e+ beam
 - FNAL : 120GeV proton beam
 - Telescope planes (Track pointing to device)
 - EUDET based on MIMOSA26 monolithic CMOS detector placed in beamline at CERN/DESY/SLAC (~3um pointing resolution).
 - Huge experience of the testbeam operation as having testbeam 3-4 times a year

Efficiency result (irrad 3x10¹⁵n_{eq}/cm²)

- Efficiencies of HV scan 200-800V have been evaluated.
 - Analyzed both 1500e and 2400e threshold data for different types.
 - All types have over 98% efficiency at 600V.
 - 1500e threshold results have over 99% efficiency.
 - Small n+ w/ BR have low efficiency at 200V

26 November 2021

TCHoU meeting

<u>K. Nakamura Pixel 2018</u>

Sensor – AISC attachment at HPK

- To readout signals from 2 dimensionally placed electrodes (pixels), readout ASIC needed to be connected.
 - the signal from each channel is read out through a solder bump
 - <u>Bump bonding :</u>
 - Solder bump deposition to the ASIC side
 - Under bump metallization to Sensor side
 - Flip-chipping : 4 chips to one sensor.

Sensor – AISC attachment at HPK

Development of Lead-free(SnAg) Bumpbonding (Since 2012)

- 1. No Flux used (to avoid corrosion)
 - confirmed flux improve connection, though

2. No backside compensation

- Improvement of Vacuum chuck jig to hold and flatten the ASIC/Sensor...(jig size ~ FE-I4 area)
- 3. <u>Special UBM</u> (key element: confidential...)
 - Simple Ni/Au UBM do not reach 100% yield ...
- 4. Hydrogen plasma reflow to remove surface oxide
- Thin sensor/Thin ASIC : 150um/150um
 - Established Bumpbonding method in the beginning of 2016.
 - Quite stable quality for both single and four ASICs. 100% yield for last one year (>100 chips are bumpbonded.)

End of life and HV spark protection

- In principle, it's break down voltage.
 - HPK sensors are very good quality (V_{bd}>1000V)
 - Other vendor : Vbd ~ Full Depletion(Vfd)+70V.
 - Vfd voltage go up by radiation damage
 - End-of-life when Vbd<Vfd
- HV spark protection

26 November 2021

- Large potential difference btw ASIC-Sensor.
 Spark happened ~400V.
- HV protection is necessary.
 - Parylene coating : survive upto 1000V

(Dicing and backside process)

HPK sensor (before radiation)

Flex assembly and CTE mismatch

- To read signal from ASIC, Flex Printed Circuit (FPC) is glued to the module by Araldite 2011.
- Cooling TPG/CFRP will attach to the backside of ASIC.
- Then wire bond ASIC pad to FPC.
- Coefficient of Thermal Expansion (CTE) is different for silicon/copper/Carbon.
 - E.g. Silicon 2.6ppm/°C Copper 16.7ppm/°C
- Huge bump stress during thermal cycling.
 - During 10 years operation, expected 400 times TC from -45°C to 40°C
 - Qualification : 100 cycle with -55°C to 60°C Temp range

Flex assembly and CTE mismatch

- The close-to-final condition of modules
 - No bump delamination increased during thermal cycle.

⁹⁰Sr β ray souce results

6 150 100 50 0 50 100 150 200 250 サーマルサイクル回数 • chip1 • chip2 • chip3 • chip4

26 November 2021

TCHoU meeting

300

Support & services

26 November 2021

Schedule

PDR : Preliminary Design Review FDR : Final Design Review PRR : Production Readiness Review

26 November 2021

Conclusion

26 November 2021

ATLAS Detector Upgrade

Inner Tracking Detectors

Straw Tube gas chamber (TRT) Silicon Strip Detector (SCT) Pixe Detector (Pixel)

Muon Detectors

Trigger chamber (TGC,RPC) Drift Tube chamber (MDT) [Toroid Magnet]

Calorimeter

LAr EM calorimeter Hadron calorimeter Forward calorimeter [Solenoid Magnet]

ATLAS Detector Upgrade

ATLAS Pixel Detector Upgrade

