LHC-ALICE実験 \sqrt{s} = 13 TeV 陽子-陽子衝突における ジェット内部中性中間子の測定

Measurement of neutral mesons inside jets in pp collisions at \sqrt{s} = 13 TeV with ALICE at the LHC

2022/3/24

TCHoU

Mar, 24, 2022

ALICE

Quantum Chromodynamics (QCD)

Standard Model of Elementary Particles

- 1. Asymptotic freedom
- 2. Color confinement

Hard process: Q >> Λ_{QCD}

Quark gluon plasma (QGP)

- Quark, Gluon
- confinement by strong interaction
- Free from confinement in high temperature and density conditions

Quark gluon plasma (QGP)

- High energy heavy ion collision experiment
- ➤ Accelerate particle to near the speed of light and collide → create high temperature and density state

Large Hadron Collider (CERN) Pb-Pb collision $(\sqrt{s_{NN}} = 5 \text{ TeV})$

Perturbative QCD and Jets

Parton Distribution function (**PDF**) which is from deep inelastic scattering describe the momentum fraction of the partons inside the incoming proton.

Fragmentation Function (**FF**) which is from collisions describe the probability that an outgoing parton fragments into the observed hadron as a function of the momentum fraction.

Jets are collimated spray of particles produced by a high momentum quark or gluon

Motivation and Goal

- The difference of measurement between inside jets with inclusive jets
 - > The measurement of η/π^0 ratio in low p_T
 - The dependency of the minimum jet transverse momentum
- The measurement of neutral meson in **high and** low p_T inside jets
 - The measurement of neutral meson using trigger data and hybrid method

1. The suppression effect of η/π^0 ratio inside jets

2. The measurement of neutral mesons and jet fragmentation function in high statistics

Analysis outline

- 1. Neutral meson reconstruction
 - Photon reconstruction
 - ✓ Calorimetric method
 - ✓ Photon Conversion Method

- Signal (Invariant mass method), Background (Event Mixing Method)
- (1) Detector acceptance (2) Reconstruction efficiency
- 2. Jets measurement
 - Jets reconstruction
 - (3) Neutral meson correction function inside jets

ALICE Detector

- $\sqrt{s} = 13$ TeV, pp collision, (LHC2016-2018)
- Event number : MB:1.32×10⁹ , EG1:8.32×10⁷ (E > 10 GeV), EG2: 1.13×10⁸ (E > 4 GeV)

- V0 detector
 MB trigger
- ✓ Photon Conversion Method
 - Inner Tracking System (ITS)
 - Time Projection Chamber (TPC)
 - Tracking and particle identification
 - Jets reconstruction
- $\checkmark\,$ Calorimetric method
 - Electromagnetic Calorimeter (EMCal)
 EG1, EG2 trigger
 - Photon Spectrometer(PHOS)

Photon reconstruction

Calorin	netric meth	od			Photon Conversion Method
Neutral mesons which are π^0 and η are made by hadronization. Decay photon enters electromagnetic calorimeter, they create the electromagnetic shower. Electromagnetic showers are reconstruction into clusters in EMCal, PHOS.				 The decay photons split e⁺e⁻ pair by electro pair production The reconstruction of V⁰ (neutral particles) by electron Neutral meson reconstruction using energy loss -track 	
e e			cell		+ track
γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ		seed			R primary vertex

Mar, 24, 2022

Invariant mass distribution of π^0 meson

• Invariant mass method

$$M_{\gamma\gamma} = \sqrt{2E_{\gamma1}E_{\gamma2}(1-\cos\theta_{12})}$$

y = Gaussian + exponetial + linear

Event mixing method (background)

Jets reconstruction

Jets algorithm	anti- k_t algorithm	_ _
Jet radius	0.4	
Minimum track p_T	0.15 GeV/c	
Type of jets	Charged jets	
Minimum jet p_T	10 GeV/c	•
Jet axis range	$ \eta_{axis} < 0.5$	

TCHoU

• anti- k_t algorithm is selecting highly energetic particles first in the recombination.

- Reconstructing charged jets only, to avoid auto-correlation from the neutral meson decays.
- To avoid jet from underlying event, minimum momentum of jet set 10 GeV/c.
- TPC acceptance is 0.9, therefore we restrict the reconstructed jet axis within < 0.5. This can be further restricted to minimize the edge effect of the acceptance

Neutral meson correction function inside jets - 1

- 1. Missed data: jets **should be reconstructed**, but jets was not reconstructed
- 2. Rejected data: jets should not be reconstructed

Neutral meson correction function inside jets = $1 + \frac{(1)-(2)}{matching \ data}$

Mar, 24, 2022

Neutral meson correction function inside jets - 2

• The correction function is used for neutral meson yield

π^0 , η measurement

- The neutral mesons are measured for the hybrid method of Electromagnetic calorimeter (EMCal, PHOS), PCM and PCM-EMC
- PCM and PHOS can be measured in low p_T

Mar, 15, 2022

 η/π^0 ratio

- η/π^0 ratio inside jets is suppressed when compared to inclusive jets.
- The suppression effect inside jets is presented definitely at low p_T .
- This difference shows modification of neutral meson production inside jets

Comparison of neutral meson measurement for minimum jet p_T - 1

- The measurement of neutral mesons inside jets when compared inclusive jets
- The measurement for minimum jet p_T is small when compared inclusive jets

Comparison of neutral meson measurement for minimum jet p_T - 2

- The ratio of the measurement of neutral mesons produced inside jets for minimum jet p_T > GeV/c when compared 10GeV.
- The ratio is higher in low p_T

- Summary
 - > Neutral mesons (π^0, η) measurement inside jets is performed at \sqrt{s} = 13 TeV in pp collision
 - > The suppression effect inside jets for η/π^0 ratio is presented in MC
 - > The comparison of η/π^0 ratio for minimum jet p_T in MC
- Outlook
 - > The measurement of cross section with correction factor and function
 - The dependency of jets radius
 - Jets fragmentation function in pp and heavy ion collision

Backup

Detector acceptance and Reconstruction efficiency

Mar, 24, 2022

Mar, 24, 2022

Rejection Factor

電磁シャワーによるクラスター

- ハドロン化に生成される中性中間子は二つの光子に崩壊
- 崩壊光子は電磁カロリメータ中で電磁シャワーが生じる
- 電磁カロリメータを通常複数のセルにまたがって生成された
 電磁シャワーをクラスタリングする

Photon Convertsion Method

- V0 選択
 - ➢ Kalman filter
 - DCA(Distance of Closest Approach)

• バックグラウンド除去 $\ge -4 < n_{\sigma} < 5$ \ge Armenteros-Podolanski

TCHoU