Mass measurement with the Rare-RI Ring at RIBF/Riken elucidates r-process abundances of heavy elements at A=122,123

The Origin of the Solar System Elements

Graphic created by Jennifer Johnson http://www.astronomy.ohio-state.edu/~jaj/nucleo/ Astronomical Image Credits: ESA/NASA/AASNova

Gravitational Waves discovery

Neutron star mergers!

LIGO observatory in USA

Neutron is converted to proton via beta decay. Number of protons defines the element.

[How were heavy elements made ?] rapid neutron capture: r-process

Neutron is converted to proton via beta decay. Number of protons defines the element.

RIKEN Campus & RIBF

RI Beam Factory at RIKEN

Production of RI beam at RIBF

Nuclear bilding soft by Atom

$$M(^{4}He) = 2 \cdot m_{p} + 2 \cdot m_{n} + 2 \cdot m_{e}$$

- **Binding Energy**

Specifications Circumference Betatron tune Momentum acceptance Transverse acceptance RI beam energy Revolution frequency

60.35m 1.21 / 0.84 ±0.5% 20π / 10π mm mrad 200 MeV/u 2.82MHz 2012 Construction started
2013 Completed
2014 Test of devices
2015 1st & 2nd commissioning
2016 3rd commissioning
2017 4th commissioning
2018 1st physics run
2020 Kicker upgrade

RI Beam Factory at RIKEN

Z. Ge (IMP)

Hongfu Li PhD Riken/IMP

Different Astrophysical conditions

M. Mumpower et al, 2015

Shell quenching at N=82 & Z<50?

Deformation below Z=50?

Deformation below Z=50?

FRDM

RI with short half-lives and low production yield

+	+ ↑ /				¹²⁵ Cs	²⁵ Cs ¹²⁶ Cs ¹²⁷ Cs ¹²⁸ Cs ¹²⁹ Cs ¹³⁰ Cs ¹³¹ Cs ¹³² Cs ¹³³ Cs ¹³			¹³⁴ Cs ¹³⁵ Cs ¹³⁶ Cs ¹³⁷ Cs ¹³⁸ Cs ¹³⁹ Cs						140	half life [s]						
←	- J		uclid	9	¹²⁴ Xe	¹²⁵ Xe	¹²⁶ Xe	¹²⁷ Xe	¹²⁸ Xe	¹²⁹ Xe	¹³⁰ Xe	¹³¹ Xe	¹³² Xe	¹³³ Xe	¹³⁴ Xe	¹³⁵ Xe	¹³⁶ Xe	¹³⁷ Xe	¹³⁸ Xe	1395	0	83.4
4	4	_ []	23Pc		1231	1241	125	1261	127	128 ₁	1291	1301	131 ₁	1321	1331	1341	1351	1361	1371	138	8.2E-4	1.6E2
	118-	119	120-	121-	122-	123-	124-	125-	126-	127 -	128-	129-	130-	131-	132-	133-	134-	135	136 -	137-	1.4E-2	2.9E2
le	le	"""Ie	' ²⁰ le	'-'Ie	'22 le	'20 Ie	' ² "le	¹²³ Ie	le	'='le	' ²⁰ le	125 Ie	¹³⁰ Ie	'''le	¹³² Ie	1991e	1941e	iss le	¹³⁰ Ie	1.5 /	4.6E-2	6E2
Sb	"'Sb	^{li8} Sb	^{li9} Sb	¹²⁰ Sb	^{I2I} Sb	¹²² Sb	¹²³ Sb	¹²⁴ Sb	¹²⁵ Sb	¹²⁶ Sb	¹²⁷ Sb	¹²⁸ Sb	¹²⁹ Sb	^{I30} Sb	^{I3I} Sb	^{I32} Sb	^{I33} Sb	^{I34} Sb	^{I35} Sb	1365	1 E-1	1353
Sn	¹¹⁶ Sn	¹¹⁷ Sn	¹¹⁸ Sn	¹¹⁹ Sn	¹²⁰ Sn	¹²¹ Sn	¹²² Sn	¹²³ Sn	¹²⁴ Sn	¹²⁵ Sn	¹²⁶ Sn	¹²⁷ Sn	¹²⁸ Sn	¹²⁹ Sn	¹³⁰ Sn	¹³¹ Sn	¹³² Sn	¹³³ Sn	¹³⁴ Sn	135 c	2 75-1	757
In	^{II5} In	^{ne} ln	^{II7} In	^{na} ln	ⁿ⁹ In	¹²⁰ In	¹²¹ In	¹²² In	¹²³ ln	¹²⁴ ln	¹²⁵ In	¹²⁶ ln	¹²⁷ In	¹²⁸ ln	¹²⁹ ln	¹³⁰ ln	^{isi} ln	¹³² In	¹³³ In	¹³⁴	2.52-1	
Cd	¹¹⁴ Cd	¹¹⁵ Cd	¹¹⁶ Cd	¹¹⁷ Cd	¹¹⁸ Cd	¹¹⁹ Cd	¹²⁰ Cd	¹²¹ Cd	¹²² Cd	¹²³ Cd	¹²⁴ Cd	¹²⁵ Cd	¹²⁶ Cd	¹²⁷ Cd	¹²⁸ Cd	¹²⁹ Cd	¹³⁰ Cd	¹³¹ Cd	¹³² Cd	¹³³ (0.5	8.6E3
Aa	¹¹³ Aa	¹¹⁴ Aa	¹¹⁵ Aa	¹¹⁶ Aa	¹¹⁷ Aa	¹¹⁸ Aa	¹¹⁹ Aa	¹²⁰ Aa	¹²¹ Aa	¹²² Aa	¹²³ Aa	¹²⁴ Aa	¹²⁵ Aa	¹²⁶ Aa	¹²⁷ Aa	¹²⁸ Aa	¹²⁹ Aa	¹³⁰ Aa	¹³¹ Aa	132/	0.9	3.4E4
	112pd	11304	11404	11504	11604	117 Dat	118 D.J.	11904	120	121pa	122 Da	123 Da	124 D.d	125	126 D.d.	127 Da	128 D.d	129 n.d	130 D.d	131 г	1.8	1.4E5
20	Pa	Pa	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pa	Pu	E	3.5	1.1E6							
Rh	'''Rh	"²Rh	" ³ Rh	^u 4Rh	" ^s Rh	"°Rh	"'Rh	"®Rh	" ⁹ Rh	¹²⁰ Rh	' ² 'Rh	¹²² Rh	¹²³ Rh	'²⁴Rh	¹²⁵ Rh	¹²⁰ Rh	^{iz7} Rh	¹²⁸ Rh			6.2	3E7
'Ru	¹¹⁰ Ru	^{III} Ru	¹¹² Ru	¹¹³ Ru	¹¹⁴ Ru	¹¹⁵ Ru	¹¹⁶ Ru	¹¹⁷ Ru	¹¹⁸ Ru	¹¹⁹ Ru	¹²⁰ Ru	¹²¹ Ru	¹²² Ru	¹²³ Ru	¹²⁴ Ru	¹²⁵ Ru			84	85	12	1E14
³ Tc	¹⁰⁹ Tc	¹¹⁰ Tc	^{III} Tc	¹¹² Tc	¹¹³ Tc	¹¹⁴ Tc	¹¹⁵ Tc	¹¹⁶ Tc	¹¹⁷ Tc	¹¹⁸ Tc	¹¹⁹ Tc	¹²⁰ Tc	¹²¹ Tc	¹²² Tc			82	83			23.5	2E32
′Мс	¹⁰⁸ Mo	¹⁰⁹ Mo	¹¹⁰ Mo	¹¹¹ Mo	¹¹² Mo	¹¹³ Mo	¹¹⁴ Mo	¹¹⁵ Mo	¹¹⁶ Mo	117 _{Mo}	¹¹⁸ Mo	¹¹⁹ Mo		nas	80	81					43	Stable

Specifications Circumference Betatron tune Momentum acceptance Transverse acceptance RI beam energy Revolution frequency

60.35m 1.21 / 0.84 ±0.5% 20π / 10π mm mrad 200 MeV/u 2.82MHz 2012 Construction started
2013 Completed
2014 Test of devices
2015 1st & 2nd commissioning
2016 3rd commissioning
2017 4th commissioning
2018 1st physics run
2020 Kicker upgrade

Phys. Scr. T166 (2015) 014039

20

Figure 1. Schematic drawing of the beam structures of the synchrotron- and cyclotron-based storage ring.

Nucleus of interest itself triggers its injection to the ring!

Enhancement of particle selection for R3

Fig. 1. Conceptual circuit diagram for particle selection and abundance tuning. Frequency of the output signal is adjustable.

Y. Abe et al., RIKEN Acc. Prog. Rep. 52 (2019)

Passele ectors bick, engress it rouces incertainer in beta measurement!

$$\frac{m_1}{q_1} = \left(\frac{m_0}{q_0}\right) \frac{1}{T_0} \quad T_1 \sqrt{\frac{1 - \beta_1^2}{1 - \{(T_1/T_0)\beta_1\}^2}}$$

$\beta = \frac{Length_{3S0}}{(TOF_{3S0} + TOF_{offset})c}$

¹²⁷Sn and ¹²⁴Ag were used to determine the two parameters Search ranges: Length = [84.8m, 84.9m], TOFoffset = [325.35ns, 325.55ns]

$$C = \beta T_{rev} C$$

$$B\rho = \frac{m}{q} \gamma \beta c = B\rho_0 \left(\frac{C}{C_0}\right)^{\gamma_t^2} \qquad \text{Get } B\rho_0 \& \gamma_t$$

$$C_0 = 60.3507 \text{ m}$$

$$\chi^2 = \frac{\left(\frac{m/q - m/q_{AME}}{\sigma^2 + \sigma_{AME}^2}\right)^2}{\sigma^2 + \sigma_{AME}^2}$$

Length = 84.8592 m TOFoffset = 325.47 ns

New R3 mass measurement result

H.F. Li et al. PRL 2022 accepted

No evidence of large deformation below Z=50!!

 10^{-7}

10⁻⁹

120

125

130

Macc number A

135

timescale 20ms, electron fraction Ye=0.15~0.35. Mumpower et al. PRC92(2015), Zhu et al., Astro. J. 863 (2018)

Mass model FRDM (baseline), Our new mass measurement of ¹²³Pd (redline) with its uncertainty ,0 _____30

140

The Origin of the Solar System Elements

	1 H		big	bang fi	usion			cos	mic r	ay fissio	on								2 He
	3 Li	4 Be	mei	rging ne	eutron	stars	? ///////	expl	odin	g massi	ve s	stars	5	5 B	6 C	7 N	8 O	9 F	10 Ne
-	11 Isotop	12 e	dvir	na low i De	mass st cay	ars	Ø	expl	oding	g white	dw	arfs	0	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
	abun- dance	half (t ₁	-life	mode	pro- duct	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	20	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
¹¹² Sn	0.97%	stable	e			4 2 Ио	43 Tc	44 Ru	45 Rh	46 Pd	4 A	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
¹¹⁴ Sn	0.66%	stable	е			74	75	76	77	78	7	79	80	81	82	83	84	85	86
¹¹⁵ Sn	0.34%	stabl	е			W	Re	Os	lr	Pt	A	Au	Hg	TI	Pb	Bi	Po	At	Rn
¹¹⁶ Sn	14.54%	stable	е					Is	otope)			Decay	r					
¹¹⁷ Sn	7.68%	stable	е					abi	un-	half-lif	ie	mo	de p	oro-					
¹¹⁸ Sn	24.22%	stable	е			59		dar	nce	$(t_{1/2})$			d	uct	67	68	69	70	71
¹¹⁹ Sn	8.59%	stabl	е			Pr	¹²¹ Sb	57.	21%	stable					Но	Er	Tm	Yb	Lu
¹²⁰ Sn	32.58%	stable			91 2a	¹²³ Sb 42.79%			stable			,	topes; n	othing	g left f	rom st	ars		
¹²² Sn	4.63%	stable					¹²⁵ Sb	²⁵ Sb syn 2.7582 y β ⁻ ¹²⁵ Te Astro					onomical Image Credits						
¹²⁴ Sn	5.79%	stable	itable iteo/ ESA/NASA/AASNova																
¹²⁶ Sn	trace	2.3×	10 ⁵ y	β-	¹²⁶ Sb														

Thank you! ありがとうございます!

	Isotop	e	Dee	cay					
	abun- dance	half-life (<i>t</i> _{1/2})	mode	pro- duct					
¹¹² Sn	0.97%	stable							
¹¹⁴ Sn	0.66%	stable							
¹¹⁵ Sn	0.34%	stable							
¹¹⁶ Sn	14.54%	stable							
¹¹⁷ Sn	7.68%	stable							
¹¹⁸ Sn	24.22%	stable							
¹¹⁹ Sn	8.59%	stable							
¹²⁰ Sn	32.58%	stable							
¹²² Sn	4.63%	stable							
¹²⁴ Sn	5.79%	stable							
¹²⁶ Sn	trace	2.3×10 ⁵ y	β-	¹²⁶ Sb					

	Isotope	Decay				
	abun- dance	half-life (<i>t</i> _{1/2})	mode	pro- duct		
¹²¹ Sb	57.21%	stable				
¹²³ Sb	42.79%	stable				
¹²⁵ Sb	syn	2.7582 y	β-	¹²⁵ Te		

Challenge #2 Minimizing energy loss on beamline

Position detector is too thick, energy loss introduces uncertainty in beta measurement!

Large area position-sensitive DL-E-MCP

Thin foil \rightarrow low energy loss

G. Hudson-Chang Master (Surrey Uni.)

Z. Ge, PhD (IMP/Riken)

R. Crane Master (Surrey Uni)

Comparison with PPAC resolution

Compact

G. Hudson-Chang Master (Riken/Surrey)

Challenge #3 Matching emittance at ring injection

Large area position-sensitive DL-E-MCP

New kicker magnets configuration

DL-E-MCP could be placed inside the kicker magnet to monitor emittance

Challenge #4 Determination of revolution time

Position detector is too thick, energy loss introduces uncertainty in beta measurement!

Rough determination of revolution time \rightarrow deduce turn number

D. Nagae et al., NIMA 2020

(almost) Perfect Isochronicity!

Challenge #5 Ejection from the ring

Kicker limitation at ejection

Upgrade of the kicker magnets SUCCESSIUN 2020

Resonant Schottky pick-up

DL-E-MCP

R3 in-ring detectors

Monitoring F5 position is necessary for verifying the isochonicity*

* Revolution time is independent of momentum

Proposed by I. Meshkov et al., NIMA523 (2004)

Quality factor Q_0 :

thickness

Ceramic tube size :

1880

290mmΦ, 15mm

Repetition time of injection : 0.5s

173.81 173.82 173.83 173.84 173.85 Resonance frequency [MHz]

Succeeded in detecting the single ⁷⁸Kr³⁶⁺ ion
 Frequency resolution: ~1.3x10⁻⁶ (FWHM)

