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テンソル繰り込み群(TRG)

例としてNサイトを持つ2Dイジングモデルを考える

モデルの詳細は初期テンソルのみに依存
計算アルゴリズムはモデルと独立

勿論，サイト数Nが大きくなれば添字の縮約の完全実行は不可能
⇒どうやって分配関数を評価するか？

H =
∑

〈i,j〉
sisj si ± 1

Z =
∑

{Si}
exp (−βH)

=
2∑

i,j,k,l,···=1
Ti,m,n,lTs,t,i,jTr,j,k,qTk,l,o,p · · ·

Z =
∫
DU det D({U}) e−Sg({U})

〈O〉 =
∫
DU O({U,D−1}) det D({U}) e−Sg({U})

P =
1

Z
det D({U}) e−Sg({U})

Z =
∑

i,j,k,...
e−S(i,j,k,...) =

∑

i,j,k,...
TijklTimnoTjpqrTksuvTlwxy · · · .

ZQCD(T, µ) =
∫
DUe−Sg[U ] det D(µ; U)

〈O〉 =
〈OeiNfθ〉||
〈eiNfθ〉||

〈O〉 =
〈Oeiθ〉||
〈eiθ〉||

Z||(T, µ) =
∫
DUe−Sg[U ]| det D(µ; U)|

U = 1 − 1

3

〈X4〉
〈X2〉2

1

ハミルトニアン

分配関数

テンソルネットワーク表現

χ(L) =
1

L2

∂2 ln Z

∂(1/2κ)2

Z =
∫
DψDψ̄DU e−ψ̄D[U ]ψ−Sg[U ]

Ti,j,k,l "
Dcut∑

m=1
U(i,j),mσmVm,(k,l)

H =
∑

〈i,j〉
sisj si ± 1

Z =
∑

{si}
exp (−βH)

=
2∑

α,β,γ,δ,···=1
Tα,λ,ρ,δTσ,κ,α,βTµ,β,γ,τTγ,δ,ν,χ · · ·

Z =
∫
DU det D({U}) e−Sg({U})

〈O〉 =
∫
DU O({U,D−1}) det D({U}) e−Sg({U})

P =
1

Z
det D({U}) e−Sg({U})

Z =
∑

i,j,k,...
e−S(i,j,k,...) =

∑

i,j,k,...
TijklTimnoTjpqrTksuvTlwxy · · · .

ZQCD(T, µ) =
∫
DUe−Sg[U ] det D(µ; U)

〈O〉 =
〈OeiNfθ〉||
〈eiNfθ〉||

1

Levin-Nave 
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TRGアルゴリズムの概略
1. サイト上のテンソルTに対する特異値分解
2. 古い添字の縮約 (疎視化)
3. 手続きの反復

大きな特異値を持つ
部分空間のみを残す

サイト数は半減

新しい添字を
持つテンソル



2Dイジングモデルを使ったテスト
アルゴリズムの要諦は特異値分解を用いた低ランク近似

誤差をコントロールするパラメーターはDcut

転移点近傍での自由エネルギーの厳密解からの相対誤差, 
格子サイズ=230〜50, Dcut=24

Xie et al. 
PRB86(2012)045139

Onsagerの厳密解との比較
相対誤差：≤10−6

XIE, CHEN, QIN, ZHU, YANG, AND XIANG PHYSICAL REVIEW B 86, 045139 (2012)

FIG. 4. (Color online) Comparison of the relative errors of free
energy with respect to the exact results for the 2D Ising model
obtained by various methods with D = 24. The critical temperature
Tc = 2/ ln(1 +

√
2).

is already less than 10−7 even at the critical temperature,
much more accurate than the TRG result.7,8 The HOSRG also
performs better than the SRG. But the difference in the results
obtained by these two methods is relatively small around the
critical point. The HOTRG is less accurate than the two SRG
methods, but it is computationally economic. The difference
between TRG/SRG and HOTRG/HOSRG lies mainly in the
basis truncation scheme. The former is based on the SVD,
while the latter is based on the HOSVD. The above comparison
indicates that the HOSVD scheme works better.

III. THREE-DIMENSIONAL SYSTEMS

The above HOTRG and HOSRG methods can be readily
extended to three dimensions. This is an advantage of the
coarse-graining scheme proposed here. On the cubic lattice, a
full cycle of lattice contraction needs to be done in three steps,
along the x axis, y axis, and z axis, respectively. At each step,
two neighboring tensors will be combined to form a single
coarse-grained tensor and the lattice size is reduced by a factor
of 2.

As an example, Fig. 5 shows how the tensors are contracted
along the z axis. The HOSVD of the coarse-grained local
tensor [Fig. 5(b)] can be similarly done as for the 2D case. But
the local tensor now has six bond indices and a HOSVD for a
higher-order tensor should be done. Moreover, the basis spaces
for both the x-axis and y-axis bonds need to be renormalized.
Thus we should determine from the core tensor and the unitary
matrices of M (n) not only the transformation matrix for the
x-direction bonds U (n), but also the transformation matrix
for the y-direction bonds V (n). After that the dimensions for
both x-axis and y-axis bonds are truncated and the local
tensor is updated using U (n) and V (n). The contraction and
renormalization of tensors along the other two directions can
be similarly done. This three-step iteration can then be repeated
until the results are converged.

After the above HOTRG iteration, one can also do a
backward iteration to evaluate the environment tensors and
carry out the HOSRG calculation in three dimensions. A
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FIG. 5. (Color online) (a) A HOTRG coarse-graining step along
the z axis on the cubic lattice. (b) Steps of contraction and
renormalization of two local tensors.

graphical representation for iteratively determining the envi-
ronment tensor in this backward iteration is shown in Fig. 6.
A series of forward-backward iterations is then performed
to take into account the second renormalization effect of the
environment to the coarse-grained tensors. In the subsequent
forward iterations, we evaluate and diagonalize the bond
density matrix (see Fig. 7) and update the coarse-grained
tensors. The environment tensors are evaluated again in the
backward iteration.

In the 3D calculation, the computational time scales with
D11 and the memory scales with D6. This cost in the
computational resource is significantly smaller than in other
3D numerical RG methods.11–17,19 We have studied the 3D
Ising model using the HOTRG for D up to 16.

The temperature dependence of the internal energy U and
the specific heat C for the 3D Ising model obtained by the
HOTRG with D = 14 is shown in Fig. 8 and compared with
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FIG. 6. (Color online) Graphical representation for the deter-
mination of the environment tensor E
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dimensions.
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Ti,j,k,l ⇒ T{j,k},{l,i} =
(
UΛV t

)

{j,k},{l,i}
=

∑

m

(
U
√

Λ
)

{j,k},m

(
V
√

Λ
)

{l,i},m
=

∑

m
(S1){j,k},m (S3){l,i},m

Ti,j,k,l ⇒ T{k,l},{i,j} =
(
UΛV t

)

{k,l},{i,j}
=

∑

m

(
U
√

Λ
)

{k,l},m

(
V
√

Λ
)

{i,j},m
=

∑

m
(S2){k,l},m (S4){i,j},m

Ti,j,k,l #
Dcut∑

m=1
U{k,l},mΛmV{i,j},m

Scont =
∫

d2x
{
|∂ρφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂2φ − ∂2φ

∗φ) + λ|φ|4
}

Z =
∫
Dφ exp(−S)

Z(original) =
∫
Dφ1Dφ2 exp(−S)

S =
∑

n



(4 + m2)|φn|2 + λ|φn|4 −
2∑

ρ=1

(
eµδρ,2φ∗

nφn+ρ̂ + e−µδρ,2φ∗
n+ρ̂φn

)




φn = (φn,1,φn,2) → (rn cos θn, rn sin θn)

1
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特異値分解(Singular Value Decomposition)

任意のm×n実行列Aは A=UΣVT と分解できる

U: m×mの直交行列

V: n×nの直交行列

Σ=diag(σ1, σ2, σ3, σ4, …, σn)     (σ1≥σ2≥ σ3≥σ4≥…≥σn≥0)

σ1, σ2, σ3, σ4,・・・,σnはAの特異値で非負

Uの各列u1, u2, …, unとVの各列v1, v2, …, vnを用いたランク1の行列和に分解, 

A=σ1u1v1T+σ2u2v2T+…+σnunvnT

σiuiviT=

ui

σi viT
××
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行列の近似

行列Aの近似

A=σ1u1v1T+σ2u2v2T+…+σkukvkT+…+σnunvnT

Ak=σ1u1v1T+σ2u2v2T+…+σkukvkT (行列k個の和で近似)

近似誤差は||A-Ak||Fで定義

||A-Ak||F=(σk+1
2+σk+2

2+…+σn
2)1/2

ただし, ||A||F=(Tr(ATA))1/2=(ΣiΣj aij2)1/2

情報圧縮の手段として画像圧縮などに利用
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特異値分解(SVD)を用いた画像圧縮

J. Demmel: Applied Numerical Linear Algebra, SIAM 1997 

200x320ピクセルの画像データ⇒ 200x320実行列A

行列を特異値分解

A=σ1u1v1T+σ2u2v2T+…+σnunvnT (n=200)

サンプル画像(200x320ピクセル) 特異値の分布(大→小)



9

復元画像の品質

Ak=σ1u1v1T+σ2u2v2T+…+σkukvkT (k≪200)

J. Demmel: Applied Numerical Linear Algebra, SIAM 1997 



モンテカルロ法との相違点

・ モンテカルロ法における符号問題および複素作用問題がない

・ LDのシステムサイズに対する計算コスト∝D×log(L)
・ グラスマン数を直接扱うことが可能
・ 分配関数Zそのものを計算可能

素粒子物理：軽いクォークのダイナミクス，有限密度QCDの相構造解析
Strong CP問題などの研究に応用可能

物質科学：強相関量子系，金属絶縁体転移，高温超伝導などの
研究に応用可能 (ハバードモデル)

Z =
∫
Dφ exp(−SRe[φ] + iSIm[φ])

Z =



∏

x,µ

∫ π

−π

dϕx,µ

2π




∏

x
T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2)

T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2) = exp


β cos px + i
θ

2π
qx





Z =



∏

x,µ

∫ π

−π

dϕx,µ

2π



 exp (−S)

Ti,j,k,l ⇒ T{j,k},{l,i} =
(
UΛV t

)

{j,k},{l,i}
=

∑

m

(
U
√

Λ
)

{j,k},m

(
V
√

Λ
)

{l,i},m
=

∑

m
(S1){j,k},m (S3){l,i},m

Ti,j,k,l ⇒ T{k,l},{i,j} =
(
UΛV t

)

{k,l},{i,j}
=

∑

m

(
U
√

Λ
)

{k,l},m

(
V
√

Λ
)

{i,j},m
=

∑

m
(S2){k,l},m (S4){i,j},m

T (new)
o,n,m,p =

∑

i,j,k,l
(S4){l,k},o (S3){k,j},n (S2){j,i},m (S1){i,l},p

Ti,j,k,l $
Dcut∑

m=1
U{k,l},mΛmV{i,j},m

Scont =
∫

d2x
{
|∂ρφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂2φ − ∂2φ

∗φ) + λ|φ|4
}

Z =
∫
Dφ exp(−S)

1

モンテカルロ法
確率的手法

テンソル繰り込み群
決定論的手法

コペルニクス的転換



11

TRG法の素粒子物理への応用(1)

2次元モデル
CP(1)モデル：Kawauchi-Takeda, PRD93(2016)114503
実φ4理論：

Shimizu, Mod.Phys.Lett.A27(2012)1250035,
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP1905(2019)184

有限密度における複素φ4理論：
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, , JHEP2002(2020)161

θ項(トポロジカル項)を持つU(1)ゲージ理論：
YK-Yoshimura, JHEP2004(2020)089

Schwingerモデル(2次元QED), θ項(トポロジカル項)を持つSchwingerモデル：
Shimizu-YK, PRD90(2014)014508, PRD90(2014)074503,

PRD97(2018)034502 
有限密度におけるGross-Neveuモデル：

Takeda-Yoshimura, PTEP2015(2015)043B01
N=1 Wess-Zuminoモデル(超対称性理論)：

Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP1803(2018)141

符号問題解決の検証，スカラー場・フェルミオン場・ゲージ場の計算手法開発
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TRG法の素粒子物理への応用(2)

4次元モデル
Isingモデル：

Akiyama-YK-Yamashita-Yoshimura, PRD100(2019)054510
有限密度における複素φ4理論：

Akiyama-Kadoh-YK-Yamashita-Yoshimura, JHEP2002(2020)161
実φ4理論：

Akiyama-YK-Yoshimura, PRD104(2021)034507
有限密度におけるNambu−Jona-Lasinio(NJL)モデル：

Akiyama-YK-Yamashita-Yoshimura, JHEP2101(2021)121

⇒研究の重心は2次元モデル・理論から4次元モデル・理論へ移行

4次元スカラー場の理論，フェルミオン場の理論への応用は成功

4次元ゲージ理論は？
有限密度におけるZ2ゲージヒッグスモデル：

Akiyama-YK, JHEP2205(2022)102



有限密度Z2ゲージヒッグスモデル(最も簡単な4次元ゲージ場+物質場の系)

𝑈!(𝑛)：格子点𝑛におけるリンク変数，Z2={±1}
𝜎(𝑛)：格子点𝑛における物質場(スピン)，Z2={±1}

𝛽：逆ゲージ結合定数

𝜂：ゲージ不変スピン-スピン結合定数

𝜇：化学ポテンシャル(密度をコントロール)
𝑎：格子間隔(𝑎=1)

有限密度におけるZ2ゲージヒッグスモデル(1)
Akiyama-YK, JHEP2205(2022)102

J
H
E
P
0
5
(
2
0
2
2
)
1
0
2

This paper is organized as follows. In section 2, we define the Z2 gauge-Higgs model
at finite density on a lattice in arbitrary dimension and explain how to construct its tensor
network representation. We present the results of the benchmark test using the (2+1)d Z2
gauge-Higgs model at µ = 0 in section 3. After that, we determine the critical endpoints
at µ = 0, 1, 2 in the (3+1)d model and discuss how they are shifted by the effect of finite
µ. Section 4 is devoted to summary and outlook.

2 Formulation and numerical algorithm

2.1 (d+1)-dimensional Z2 gauge-Higgs model at finite density

We consider the partition function of the Z2 gauge-Higgs model at finite density on an
isotropic hypercubic lattice Λd+1 = {(n1, . . . , nd+1) |nν = 1, . . . , L} whose volume is equal
to V = Ld+1. The lattice spacing a is set to a = 1 without loss of generality. The gauge
fields Uν(n) (ν = 1, . . . , d+1) reside on the links and the matter fields σ(n) are on the sites.
Both variables Uν(n) and σ(n) take their values on Z2 = {±1}. The action S is defined as

S = −β
∑

n∈Λd+1

∑

ν>ρ

Uν(n)Uρ(n+ ν̂)Uν(n+ ρ̂)Uρ(n)

− η
∑

n

∑

ν

[
eµδν,d+1σ(n)Uν(n)σ(n+ ν̂) + e−µδν,d+1σ(n)Uν(n − ν̂)σ(n − ν̂)

]
, (2.1)

where β is the inverse gauge coupling, η is the gauge-invariant spin-spin coupling and µ

is the chemical potential. This parametrization follows ref. [37]. We employ the peri-
odic boundary conditions for both the gauge and matter fields in all the directions. The
partition function is then given by

Z =




∏

n,ν

∑

Uν(n)=±1








∏

n

∑

σ(n)=±1



 e−S , (2.2)

where the sum is taken over all possible field configurations. Since σ(n) ∈ Z2, one is al-
lowed to choose the so-called unitary gauge [28], which eliminates the matter field σ(n) by
redefining the link variable Uν(n) via

σ(n)Uν(n)σ(n+ ν̂) #→ Uν(n). (2.3)

With the unitary gauge, eq. (2.1) is reduced to be

S = −β
∑

n∈Λd+1

∑

ν>ρ

Uν(n)Uρ(n+ ν̂)Uν(n+ ρ̂)Uρ(n) − 2η
∑

n

∑

ν

cosh (µδν,d+1)Uν(n), (2.4)

whose partition function is

Z =




∏

n,ν

∑

Uν(n)=±1



 e−S , (2.5)

instead of eq. (2.2).

– 3 –
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Z2ゲージヒッグスモデルはQCDと同様に臨界終点が存在

臨界終点をうまく決定できるか？
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Figure 1. Schematic phase diagram of (3+1)d Z2 gauge-Higgs model at µ = 0. The existence
of the critical endpoint is established analytically [25–27] and numerically [28–31]. β-axis denotes
the inverse gauge coupling and η represents the spin-spin coupling. Solid lines show the first-order
phase transition and dotted line is the second-order transition line [32]. The pure Z2 gauge theory
is characterized by η = 0 and the limit β → ∞ is equivalent to the Ising model.

Toward this goal, we investigate the phase structure, particularly the location of the
critical endpoint,2 of the (3+1)d Z2 gauge-Higgs model at finite density in this paper. So
far, the TRG analyses on the gauge theories have been limited to the (1+1)d systems [3,
9, 10, 14, 18–21] and (2+1)d ones [22–24]. This study is the first application of the TRG
method to a (3+1)d lattice gauge theory. The existence of the critical endpoint in the phase
diagram of Z2 gauge-Higgs model is established both by the analytical discussions [25–27]
and by the Monte Carlo simulations [28–31], though the precise location of the critical
endpoint does not seem to have been identified. Figure 1 shows a sketch of the phase
diagram for the (3+1)d Z2 gauge-Higgs model at vanishing density [25–32]. We focus on
the phase transition between the Higgs phase and the confinement phase at a finite chemical
potential µ along the critical end line. Although Z2 gauge-Higgs model does not suffer from
the sign problem even at finite density, this work is motivated by the preparation for the
future investigation of the critical endpoint in the finite density QCD. Before studying
the model in (3+1) dimensions, we firstly make a benchmark test employing the (2+1)d
Z2 gauge-Higgs model whose phase structure shares the similar features with the (3+1)d
case. In the (2+1)d case, the location of the critical endpoint at µ = 0 is consistently
reproduced with recent Monte Carlo studies [33–35]. On the other hand, in the (3+1)d
case, we observe a discrepancy between the TRG result and those obtained by the mean-
field approximation [27] and the Monte Carlo studies [28].

2Although we mainly focus on the critical endpoint in this model, there are other interesting parameter
regimes and corresponding discussions in three dimensions such as an emergent universality class at the
multi-critical point [34, 35] or possible higher-order transitions [36].
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Figure 2. Structures of Tc in eq. (2.11) in Λ2+1 (left) and Λ3+1 (right). The lattice geometry in
real space is represented by dotted lines in both cases. Red symbols show link tensors in corre-
sponding dimensions and blue ones are plaquette tensors. Skewed directions in the four-dimensional
description correspond to the forth direction in Λ3+1.

2.3 A remark on the TRG algorithm

In this work, we employ the anisotropic TRG (ATRG) algorithm [5] to evaluate eq. (2.11).
Both in (2+1)- and (3+1)-dimensional cases, the ATRG is parallelized according to refs. [15,
39]. As a singular value decomposition (SVD) algorithm in the bond-swapping procedure
explained in refs. [5, 40], the randomized SVD (RSVD) is applied choosing p = 2D and q =
D, where p is the oversampling parameter, q is the iteration numbers of QR decompositions
in the RSVD, and D is the bond dimension in the ATRG algorithm.

3 Numerical results

3.1 Study of the (2+1)-dimensional model as a benchmark

The partition function of eq. (2.5) is evaluated using the parallelized ATRG algorithm on
lattices with the volume V = L3 with the periodic boundary condition in all the directions.
In the following, all the results are calculated setting D = 48 on a lattice whose volume is
10243. Up to V = 10243, the TRG computation converges with respect to the system size
and allows us to access the thermodynamic limit.

We determine the critical endpoint (βc, ηc) at µ = 0, where the first-order phase
transition line terminates. We employ the average link defined by

〈L〉 = 1
(d+ 1)V

∂ lnZ
∂(2η) (3.1)

to detect the first-order phase transition. The factor (d+ 1)V corresponds to the number
of links in Λd+1 with the periodic boundary condition. We evaluate 〈L〉 with the impurity
tensor method. The tensor network representation of 〈L〉 is presented in appendix A.
Figure 3 shows the η dependence of the average link with the several choices of β ∈
[0.700, 0.710]. We observe clear gaps of 〈L〉 with β ∈ [0.701, 0.710], though it is difficult
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Figure 8. η dependence of 〈L〉 at µ = 0 for β ∈ [0.305, 0.315].
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Figure 9. (Left) Fit of ∆〈L〉 at µ = 0 as a function of η. (Right) Fit of ∆〈L〉 at µ = 0 as a
function of β.

critical endpoint. Additionally, it may be worth emphasizing that the current TRG compu-
tation allows us to capture a clear gap of 〈L〉 in the vicinity of transition points characterized
by η+ − η− = O(10−4), and 〈L〉 does become smooth at β = 0.305 as shown in figure 8.

Let us turn to the finite density cases with µ = 1 and µ = 2. In figures 10 and 11, we
plot the η dependence of the link average with the several choices of β. Table 3 summarizes
the finite values of ∆〈L〉 and the transition points. ∆〈L〉 is fitted with the same functions
as in the case of µ = 0. The fit results are shown in figure 12 for µ = 1 and in figure 13
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critical endpoint. Additionally, it may be worth emphasizing that the current TRG compu-
tation allows us to capture a clear gap of 〈L〉 in the vicinity of transition points characterized
by η+ − η− = O(10−4), and 〈L〉 does become smooth at β = 0.305 as shown in figure 8.

Let us turn to the finite density cases with µ = 1 and µ = 2. In figures 10 and 11, we
plot the η dependence of the link average with the several choices of β. Table 3 summarizes
the finite values of ∆〈L〉 and the transition points. ∆〈L〉 is fitted with the same functions
as in the case of µ = 0. The fit results are shown in figure 12 for µ = 1 and in figure 13
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𝜇 = 0の計算を𝜇 = 1,2でも実行して(𝛽" ,𝜂")を決定
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Figure 13. (Left) Fit of ∆〈L〉 at µ = 2 as a function of η. (Right) Fit of ∆〈L〉 at µ = 2 as a
function of β.

We have investigated the critical endpoints of the higher-dimensional (more than two-
dimensional) Z2 gauge-Higgs model at finite density. To locate them, we have employed the
average link 〈L〉 as an indicator: the critical endpoint is determined by vanishing ∆〈L〉. In
the (2+1)d model, it has been confirmed that the resulting location of the critical endpoint
at vanishing density is consistent with the recent result provided in ref. [34]. Also, we find
that the first-order transition points located by the TRG method are in excellent agreement
with the self-dual line. In the (3+1)d model, the critical endpoints at µ = 0, 1, 2 are deter-
mined by the TRG calculation with D = 48. Current results show that the critical inverse
gauge coupling βc has little µ dependence, while the critical spin-spin coupling ηc is sizably
diminished as µ increases. At vanishing density, our estimation of the critical endpoint is in-
consistent with the known estimated by the mean-field theory and the Monte Carlo studies.

The current study shows that the TRG method enables us to locate the critical end-
point investigating a certain observable along the first-order transition line. As a possible
future work, it must be interesting to locate the triple point for this model and investigate
the universality class as discussed in refs. [34, 35]. Although we have just focused on the
simplest gauge group Z2 and the model does not suffer from the sign problem, our strategy
is easily extended to the ZN gauge-Higgs model with N > 2 in arbitrary dimension. Since
the TRG does allow us to study the systems with the sign problem even in four dimensions,
as demonstrated by some practical computations in refs. [7, 15], we expect that the TRG
is a promising method to investigate the higher-dimensional lattice gauge theories with
the sign problem. This is a possible research direction as future work. As a next step, in
addition, this study should be extended to the higher-dimensional lattice gauge theories
with continuous gauge groups, also including dynamical matter fields.
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µ = 0
A βc p B ηc q

2.7(4) 0.3051(2) 0.44(3) 3.0(6) 0.1784(2) 0.43(4)
µ = 1

A βc p B ηc q

1.1(2) 0.3053(2) 0.26(4) 1.6(6) 0.1595(3) 0.30(7)
µ = 2

A βc p B ηc q

1.6(2) 0.2969(2) 0.33(3) 2.0(4) 0.1264(1) 0.33(4)

Table 4. Fit results for ∆〈L〉. All the results are obtained with D = 48 in the TRG method.
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Figure 12. (Left) Fit of ∆〈L〉 at µ = 1 as a function of η. (Right) Fit of ∆〈L〉 at µ = 1 as a
function of β.

Finally, we investigate the µ dependence of the number density defined by

〈n〉 = 1
V

∂ lnZ
∂µ

, (3.3)

which is also evaluated by the impurity tensor method. In figure 15, we plot the number
density 〈n〉 as a function of µ with three choices of β at η = 0.1. We expect the confinement
phase over 0 ≤ µ ≤ 4 at β = 0.20. At β = 0.34 and 0.38, the number density shows a
finite gap at a certain point of µ, which indicates that there exists the first-order phase
transition from the confinement phase to the Higgs phase.

4 Summary and outlook

This work is the first application of the TRG method to a four-dimensional lattice gauge
and serves as a preparatory study for future investigation of the critical endpoint of the
finite density QCD.
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まとめ

・ モンテカルロ法における符号問題および複素作用問題がない

・ LDのシステムサイズに対する計算コスト∝D×log(L)
・ グラスマン数を直接扱うことが可能
・ 分配関数Zそのものを計算可能

素粒子物理：軽いクォークのダイナミクス，有限密度QCDの相構造解析

Strong CP問題などの研究に応用可能
物質科学：強相関量子系，金属絶縁体転移，高温超伝導などの

研究に応用可能 (ハバードモデル)

Z =
∫
Dφ exp(−SRe[φ] + iSIm[φ])

Z =



∏
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∏
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d2x
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∗φ) + λ|φ|4
}

Z =
∫
Dφ exp(−S)

1

現段階：

4次元理論(スカラー，フェルミオン，ゲージ)の計算が可能になった
有限密度Z2ゲージヒッグスモデルの計算に成功

⇒連続群(U(1))・非可換群(SU(2),SU(3))への応用


