GroundBIRD

Observation of CMB polarization with wide-sky survey and fast rotation scanning

Shunsuke Honda (Astro. Obs.)

INDEX

- CMB basics
- GroundBIRD overview
- Sensitivity calculation for one cosmological parameter

- MKID developments
- Readout developments
- Observation results

CMB Polarimeter : GroundBIRD

Shunsuke Honda

Anisotropy

"Extrinsic" dipole due to our motion

Planck intermediate results LVII. Joint Planck LFI and HFI data processing, A&A 643, A42 (2020)

CMB anisotropy expanded with spherical harmonics

Polarization

Shunsuke Honda (U Tsukuba)

E and B modes

$$Q(\hat{n}) \pm iU(\hat{n}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\pm 2,\ell m} \pm 2Y_{\ell}^{m}(\hat{n})$$

E mode (even parity)

$$a_{E,\ell m} = - \left(a_{+2,\ell m} + a_{-2,\ell m} \right) / 2$$

converted to real space \rightarrow

combination of electron scattering and temperature isotropy

▶ primordial gravitational wave: ℓ<100</p>

B mode (odd parity)

$$a_{B,\ell m} = i \left(a_{+2,\ell m} - a_{-2,\ell m} \right) / 2$$

converted to real space \rightarrow

▶ gravitational lensing: ℓ~O(100-1000)
→ leakage from E to B

▶ primordial gravitational wave: ℓ<100

2022/06/24

E and B modes

Atmosphere and foreground

To measure CMB precisely, foreground and atmospheric components should be carefully removed from the data.

https://www.cosmos.esa.int/web/planck/picture-gallery

Atmosphere contributions

→ non-pol. radiations

No realistic sensitivity for intensity at all Could not be affected so much in pol. if time scale <10sec

→ large scale observation is difficult for the ground experiments...

→ multiple observational freq. bands are essential

GroundBIRD (GB)

Compact telescope for large scale CMB-polarization observations

Installed at the observatory in 2019 and achieved the first light with moon

beam size ~0.5° at 145GHz

Selectable elevation from 60° to 90°

Superconducting detector "MKIDs"

faster time response than sampling rate of 1ksps two observational frequency bands = **145GHz and 220GHz**

Continuous azimuth rotation at 20RPM

mitigating effects of atmospheric fluctuation

 \rightarrow Cutting out any 1/f on timescales longer than 3 seconds

Frequency [GHz] https://www.cosmos.esa.int/web/planck/picture-gallery

2022/06/24

Science Targets

13

High sensitivity measurements of large angular-scale polarizations

Science Targets

High sensitivity measurements of large angular-scale polarizations

Pulse tube cooler...

Detector cooled down to 250mK

Focal plane

2022/06/24

Telescope property: rotary joint

2022/06/24

Shunsuke Honda (U Tsukuba)

17 Telescope property: cold mirror and focal plane

mirror design

7 wafers on the focal plane

23pix. for each wafer

- ▶ 138 pix. with 145GHz for CMB
- ▶ 23 pix. with 220GHz for dust

Kevlar small jigs for thermal isolation

Thermal isolation well achieved by tensions of Kevlar wires

temp. 1

thermal conductivity ~ 0.0064 [mW/K]

temp. 2

spec. of optical filters at focal plane

2022/06/24

Observation at Teide Mountain

19 Telescope Installation and First Light <u>S.Honda et al. (2020) Proc. SPIE</u>

Deployment at Teide Observatory (TO) - 2400m alt. in Tenerife

Demonstration of high-speed-rotation scan at 20RPM /

First light (Moon) Sep. 2019

→ Confirmation of optical design

Demonstration of large-sky coverage

→ End-to-end function test

Moon image obtained by test MKID array Integration time [ms] indicating how much data was taken at each sky pixel. Test MKID array took data during several days with 120°/sec continuous rotation.

* Test MKID for the first-light campaign was borrowed from SRON.

Shunsuke Honda (U Tsukuba)

2022/06/24

20

GroundBIRD and QUIJOTE

QUIJOTE

- continuous azimuth rotation at 2-10 RPM
- elevation up to 30°
- installed just next to GB
- Iow-frequency bands covered with two telescopes:
 - 11, 13, 17, 19 GHz with QJ1
 - 30, 40 GHz with QJ2

GroundBIRD + QUIJOTE combined observation = eight freq. bands 10 - 220GHz → widest frequency analysis to accurately remove foregrounds + extract CMB

²¹ Forecast of τ with large scale E-mode <u>K. Lee et al 2021 ApJ 915 88</u>

CMB, synchrotron, and dust simulated maps with cosmological parameters given by Planck

Three year observations in GB+QJ

Artificial noises

	Noise level	Frequency
	$(\mu K \text{ arcmin})$	(GHz)
. 1/	3600	11
+ 1/1	3600	13
(kne	5100	17
	5100	19
	160	30
	91	40
	110	145
	780	220

+ 1/f noise to GB not QJ (knee at 0.1Hz)

GroundBIRD + QUIJOTE combined analysis can provide τ value with similar unc. of Planck.

2022/06/24

Summary

The cosmic Microwave Background is the key to understanding our universe. To evaluate the anisotropy, the power spectrum is calculated.

GroundBIRD observes CMB polarization at a large angular scale with highspeed rotation at 20RPM

- Unique technologies: high-speed rotation scanning at 120°/sec with the custom rotary joint
- Installation at Teide observatory in 2019 → First light achieved
- The τ sensitivity is estimated with GB+QJ combined analysis

MKID and DAQ system in GroundBIRD

Shunsuke Honda

MKID

2022/06/24

Shunsuke Honda (U Tsukuba)

2022/06/24

MKID and readout method

9 different frequency waves injected

then, readout responsess simultaneously Frequency [Hz]

Shunsuke Honda (U Tsukuba)

6.05

6.10

6.00

Developments for GroundBIRD MKID

New MKID sensor for GroundBIRD developed with SRON

- Hybrid MKID with Al-NbTiN for 150GHz band
- Systematic method established to maximize the sensitivity with simulations.

Typical MKID power spectrum

27 Optimization of TLS noise in Hybrid-MKID

ASJ 2022.03 H. Kutsuma

2022/06/24

Shunsuke Honda (U Tsukuba)

GB-KID for science observation

Proto-type sensor chip

28

- 23 pixels for observations
 - + 4 pixels without lenslets
- antenna and lenslet for 150GHz
- Based on TLS suppressed design

Installed to GroundBIRD in cooling run of 2021.07

SRON MKID: Al-NbTiN MKID 23pix for tests of our science observations

4/27 pixels with lenslets for performance checks

In the readout, we need to use 32 tones for MKID + noise measurements.

GroundBIRD readout system

29

2022/06/24

- Simple readout system
- Generating/receiving RF signals
- 32 tones demonstrated
 - \rightarrow could be 128 tones
- Trigger function implemented
- ▶ Tones within LO ± 100MHz

Four readout box installed!

Shunsuke Honda (U Tsukuba)

GroundBIRD DAQ Board

- FPGA evaluation board: KCU105 from XILINX
- Analog board for ADC/DAC: RHEA (custom-ordered board)
 - Tuned for GroundBIRD experiment

board	KCU105 + RHEA
max. multiplexing	128
sampling rate	1kSPS for 128 mux
sent to PC	1MSPS for ~4 mux
power	~23W
data rate	1.7MB/s for 1kSPS (120mux)
communication	LAN(TCP/UDP)
ADC Spec.	2 Vpp, 14bit, 2 lines
DAC Spec.	1 Vpp, 16bit, 2 lines
sampling rate on ADC/DAC	200MSPS
band width	200MHz (LO freq. ± 100MHz)

The trigger function was implemented to check the MKID performance originally

\rightarrow Can be directly usable for the particle detection.

▶ sampling rate = normally 1MSPS / DAQ is triggered with OR of all KIDs

32 Measurement of readout performance S.Honda et al. (2020) Proc. SPIE

TOD during the observation

Evaluation of readout system performance

noise spectrum of readout system

data taken with 32tones \rightarrow 27 tones evaluated

Low enough noise level rather than a cold amp. noise
Successed simultaneous observations with 32 tones!

2022/06/24

MKID property

frequency sweeping (LO ± 100MHz)

26/27 pixels in readout band width

PSD of one MKID with lenslet

seeing roll-off shape both in amp. and phase

observations with 1kSPS dominated by the photon noise

Moon observations with new MKID

焦点面位置に応じてピクセルごとに 別の位置で月が撮像される

Current Status

Test sensor upgraded with 23pixels+lenslets

→ Performance check all pixels in 2022

cooling run 2021.12

cooling run 2021.07

Full array installations in 2023.03

- compact chip size
- antennas with 4 directions for Q and U
- AR coating on the lenslet

full array installation 2023.03

2022/06/24

Shunsuke Honda (U Tsukuba)

Summary

GroundBIRD uses MKID as the focal plane detector

- Fast time response, easy to be multiplexed

To suppress 1/f noise given by the detector chip, we developed the simulation model for hybrid MKIDs.

 \rightarrow GB-KID was designed based on this evaluation

Proto-type was fabricated and tested in GroundBIRD

 \rightarrow The performances are very nice

This evaluation will be published as the paper after fabricating the first GB-KID chip in this year.

The readout system was given by the FPGA + frequency conversion.

 \rightarrow Noise level is enough lower than the LNA white noise at 4K.