Next generation silicon pixel detectors: towards picosecond timing

MONOLITH

Giuseppe lacobucci — Université de Genève

Swiss National Science Foundation

Established by the European Commissio

Precise timing measurement at HL-LHC

Requirements for silicon detectors for 4D tracking at the HL-LHC:

- Time resolution: 30 ps
- Radiation tolerance: $\geq 10^{15} n_{eq} \cdot cm^{-2}$

- High Luminosity LHC (HL-LHC, starting in 2029): expect a pile-up of 150-200 events per bunch crossing - Timing and spatial resolution of standard silicon trackers not sufficient: 10-15% of vertexes composed of 2 events

- Spatial granularity: ~1 mm (timing information assigned to the track)

Tsukuba Global Science Week, September 27, 2022

Timing resolution in silicon pixel detectors mainly determined by:

- 1. Sensor geometry and fields
- 2. Charge-collection (Landau) noise
- 3. Electronic noise
- 4. Gain: Internal charge multiplication (except 3D)

Challenge:

Optimise these parameters for **picosecond timing** while maintaining other performance requirements

1. Sensor geometry and fields

Sensor geometry needs to guarantee fast and uniform time response:

- High and uniform electric field (charge transport with uniform and saturated drift velocity) High and uniform weighting field (fast and uniform signal induction)

$$I_{ind} = \sum_{i} q_{i} \overrightarrow{v}_{drift,i} \cdot \overrightarrow{E}_{w,i}$$

2. Charge-collection (Landau) noise

L. Paolozzi PhD thesis, 2014 – http://www.infn.it/thesis/thesis_dettaglio.php?tid=11828

Sensor design needs to reduce charge-collection noise:

Way out: thinning of the sensor

Challenge: although thin sensors reduce charge collection noise, they are typically bad for Signal/Noise (less ionization + increased capacitive coupling to sensor backside)

Giuseppe lacobucci — Université de Genève

Tsukuba Global Science Week, September 27, 2022

Non uniform charge deposition along particle track induces a jitter in the current pulse

H. Sadrozinski, A. Seiden and N. Cartiglia, 2018 Rep. Prog. Phys. 81 026101

3. Electronic noise

Once the geometry has been fixed, the time resolution depends mostly on the

$$\sigma_{t} = \frac{\sigma_{V}}{\frac{dV}{dt}} = \frac{A_{Gain} \cdot ENC}{A_{Gain} \cdot I_{ind}} \cong \frac{t_{rise}}{\frac{Q}{ENC}} = \frac{t_{rise}}{\frac{Signal}{Noise}}$$
Time

→ Need an ultra-fast, high-gain, low-noise (low power-consumption) electronics

Towards ps timing: Outline

Under the impulse of the High Energy Physics community, a new generation of silicon sensors for timing is being developed:

30 ps sensors:

- LGAD (Low-Gain Avalanche Detector)
 - ➡ TI-LGAD (Trench-Isolated LGAD)
 - ➡ AC-Coupled (Resistive) LGAD

Giuseppe lacobucci – Université de Genève

PicoAD (MONOLITH Project)

Low Gain Avalanche Detectors LGAD

LGADs: developed and being produced for HL-LHC

- Depleted thickness 20 100 µm
- Time resolution: 25 35 ps (depending on the <u>thickness</u>)

Low Gain Avalanche Detectors

• Internal charge multiplication (gain = 10 – 20) \Rightarrow S/N increases and gives better σ_{time}

• Hybrid silicon "pad" sensors; 1 mm pads, with $\leq 100 \mu$ m inactive inter-pad region

Tsukuba Global Science Week, September 27, 2022

Recent test of ultra-thin FBK LGADs :

35 µm thick LGADs approach 25 ps time resolution (mostly due to reduction of Landau-noise jitter)

Low Gain Avalanche Detectors

Demonstrated radiation tolerance and time resolution for HL-LHC:

Low Gain Avalanche Detectors

LGADs now being fabricated for the HL-LHC experiments:

ATLAS - HGTD

UFSD 4 batch for final sensor qualification

Giuseppe lacobucci — Université de Genève

CMS - ETL

- Full sensors ~ 2 x 2 cm²
- 15 x 15 and 16 x 16 arrays
- 1.3 mm² pads

(Courtesy of G. Paternoster)

LGAD: from pads to pixels

Pixel isolation and termination structures are replaced by a trench that:

- is a few μ m deep and ~1 μ m wide, filled with silicon oxide
- acts as a drift/diffusion barrier for electrons and isolates adjacent pixels
- reduces the inactive region in-between pixels from ~60 µm to few µm

Prototypes already produced with pixel pitch down to 55µm

Giuseppe lacobucci — Université de Genève

Tsukuba Global Science Week, September 27, 2022

TI-LGAD radiation tolerance

NIEL level: 0 $3.5 \cdot 10^{15} n_{eq}/cm^2$ with **laser**: $5ps \rightarrow 30ps$ with 90 Sr: 35ps \rightarrow 60ps

M. Senger – VCI 2022

Resistive AC-Coupled LGADs

Standard LGAD

- AC-coupled to the resistive n+ layer via dielectric coupling
- Gain layer NOT segmented: 100% fill factor
- since the signal spreads over adjacent pixels

Note that it is a different way to read out the signal and segment the sensor,

Tsukuba Global Science Week, September 27, 2022

AC-Coupled LGAD: How does it work?

Signal spreads over adjacent pixels, with amplitude inversely proportional to the hit distance

RSD2 production

Tsukuba Global Science Week, September 27, 2022

Pixel AC-LGAD by **FBK**

Time resolution: 30-35 ps, regardless of pixel pitch Spatial resolution: $\approx 4\mu m + 3\%$ of pixel pitch

AC-Coupled LGAD

Pixel AC-LGAD by

Tsukuba Global Science Week, September 27, 2022

AC-Coupled Resistive LGAD

Standard Silicon Detector

Figure 10: Sketches of a standard silicon detector and of an RSD with the same spatial resolution of about 5-10 μ m.

Giuseppe lacobucci — Université de Genève

AC-Coupled LGAD is a candidate to combine in future experiments 30ps timing and few µm spatial resolution with a reduced number of readout channels

Resistive Silicon Detector

The TIMESPOT Project 3D sensors

"Gain? no thanks! go... Geometric !" (A. Lai, INFN)

Hybrid sensor in which collection electrodes are vertical highly doped columns

Challenge:

3D sensors: no gain, but geometry

Original idea by Sherwood Parker (1997)

Inefficiency in region of collection electrode at perpendicular particle incidence

Sensitive volume and electrode shapes designed for maximum performance:

3D sensors

TCAD simulation of three electrode geometries:

Thrench geometry offers the best configuration

Timespot: testbeam results

 π^+ beam

Time Resolution: down to ≈ 12 ps

limespot: irradiated sensors

3D sensors are intrinsically radiation hard: time resolution and efficiency maintained even after the extreme fluence of 2.5.10¹⁶ n_{eq}/cm²

he Mondlith

Our recepy for picosecond timing with silicon:

SiGe BiCMOS

European Established by

MONOLITHIC

PicoAD: Picosecond Avalanche Detector

the European Commission

Giuseppe Iacobucci

- project P.I.
- System design

Thanushan Kugathasan

- Lead chip design
- Digital electronics

Roberto Cardella

- Sensor design
- Laboratory test

Mateus Vicente

- System integration
- Laboratory test

Matteo Milanesio

- Laboratory test
- Data analysis

Antonio Picardi

- Chip design
- Firmware

Jihad Saidi

- Laboratory test
- Data analysis

Carlo Alberto Fenoglio

- Chip design
- Firmware

Lorenzo Paolozzi

- Sensor design
- Analog electronics

Magdalena Munker

- Sensor design
- Laboratory test

Stefano Zambito

- Laboratory test
- Data analysis

Fulvio Martinelli

- Chip design
- Firmware

Théo Moretti

- Laboratory test
- Data analysis

Chiara Magliocca

- Laboratory test
- Data analysis

- **Rafaella Kotitsa**
- Sensor simulation

Luca lodice

- Chip design
- Firmware

The UniGe Silicon Team

Didier Ferrere

- System integration
- Laboratory test

Yannick Favre

- Board design
- RO system

Sergio Gonzalez-Sevilla System integration

• Laboratory test

Stéphane Débieux

MONOLITH

- Board design
- RO system

Main research partners:

Roberto Cardarelli INFN Rome2 & UNIGE

Holger Rücker IHP Mikroelektronik

Marzio Nessi CERN & UNIGE

Bernd Heinemann IHP Mikroelektronik

SiGe BiCMOS Front-End Electronics

Giuseppe lacobucci — Université de Genève

- SiGe HBT = BJT with Germanium as base material.
- Grading of Ge doping in base: charge-transport in base via drift
 - reduced charge-transit-time in base
 - high current gain β
- **Higher doping** in base is possible: thinner base
 - \blacktriangleright reduced base resistance R_h

$$C_{series\ noise} \propto \sqrt{k_1 \frac{C_{tot}^2}{\beta} + k_2 R_b C_{tot}^2}$$

Leading-edge IHP SG13G2 technology, 130 nm process featuring SiGe HBT

Monolithic SiGe BiCMOS for timing

Monolithic prototypes with SiGe BiCMOS (without internal gain layer)

- Discriminator output
- 100ps TDC +I/O logic
- and 130µm side
- Discriminator output

• 30ps TDC +I/O logic • Analog channels

PicoAD:

Multi-Junction Picosecond-Avalanche Detector©

with continuous and deep gain layer:

- De-correlation from implant size/geometry → high pixel granularity and full fill factor (high spatial resolution)
- Only small fraction of charge gets amplified → reduced charge-collection noise

(enhance timing resolution)

Giuseppe lacobucci — Université de Genève

PicoAD Sensor Concept

© G. Iacobucci, L. Paolozzi and P. Valerio. Multi-junction pico-avalanche detector; European Patent EP3654376A1, US Patent US2021280734A1, Nov 2018

The proof-of-concept monolithic ASIC was produced by IHP in their SG13G2 SiGe BiCMOS process.

The ASIC contains:

- Four matrices of hexagonal pixels with $\approx 100 \mu m$ pitch
 - with different electronics configurations
- Four analog pixels
 - tested with ⁵⁵Fe source and in testbeam

IHP also produced **PicoAD** special wafers with four different gain-layer implant doses

PicoAD monolithic proof-of-concept prototype

PicoAD Proof-Of-Concept Prototype (2021) PIXEL MATRIX **OA3** <u>CA2</u> **BIAS DACS**

X-rays from ⁵⁵Fe radioactive source:

- mainly ~5.9 keV photons
- point-like charge deposition

Characteristic double-peak spectrum

- photon absorbed in drift region holes drift through gain layer & multiplied
 - first peak in the spectrum

photon absorbed in absorption region

electrons through gain layer & multiplied second peak in the spectrum

Gain Measurement with ⁵⁵Fe source

Average amplitudes of h+ and e- gains extracted via gaussian fit around local maxima

Assumption of no gain multiplication when:

 \mathbf{i}

- photon absorbed in drift region
- lowest voltage (85 V)
- lowest dose (dose 1)

Giuseppe lacobucci — Université de Genève

value

Gain Measurement with ⁵⁵Fe source

Tsukuba Global Science Week, September 27, 2022

Gain Measurement with ⁵⁵Fe source

A gain up to \approx 20 for ⁵⁵Fe X-rays obtained at HV = 120 V and T = -20 °C

Evidence for gain suppression due to space-charge effects in the case of ⁵⁵Fe X-rays

PicoAD: laser measurements

PicoAD proof-of-concept prototype:

99.9% for all power consumptions

Testbeam results: Detection Efficiency

Drops to 99% for HV=105 V

Best performance: (17.3±0.4) ps for HV=125 V and Power = 2.7 W/cm²

Testbeam results: Time Resolution^[6]

Timing resolution of 30 ps even at power consumption of 0.4 W/cm²

Signal MPV amplitude

Testbeam results: dependence on position

Time resolution

Efficiency

Sub-picosecond TDC

We are developing a sub-picosecond TDC based on a novel design (our patent[©] & more):

© R. Cardarelli, L. Paolozzi, P. Valerio and G. Iacobucci, European Patent Application / Filing - UGKP-P-001-EP, Europe Patent EP 18181123.3. 2 July 2018.

Standalone prototype still under test at UNIGE. Integrated in MONOLITH 2022 monolithic ASIC.

- Triggered by the needs of the HL-LHC and beyond, the HEP community is working on precise timing with silicon to produce 4D trackers.
- resistive AC-Coupled LGAD to reduce the number of channels
- Hybrid LGAD pads will be used in ATLAS & CMS, with 30 ps time capabilities Evolving towards : - TI-LGAD to obtain small-pitch pixels
- Two projects are producing results at the level of 10 ps (below the Landau limit):
 - TIMESPOT, featuring the intrinsically rad-hard hybrid 3D sensors
 - MONOLITH, featuring monolithic implementation of SiGe BiCMOS electronics on the novel **PicoAD** sensor

Production of full systems with 10µm and 10ps resolutions is a long way ahead of us

Summary

Extra Material

3D trench sensors

Sensor fabrication @ FBK

2 batches (2019 and 2020)

The optimal geometry

- 3D-trench •
- 5 x 40 x 135 µm³ trench
- 150 µm pixel depth

Pixel geometry

Pixel layout

temp metal for static tests

Matrix of 3D-trench sensors	trenc
	pias
	SEM HV: 10.0
	View field: 176
	SEM MAG: 1.5
	collecting trench
	4
	bias trench

ew field: 176 µm M MAG [.] 1 57 kx	EM HV: 10.0 kV	collecting trench	
Det: SE Date(m/d/v): 10/29/19	WD: 11.59 mm		
50 µm			
FBK Micro-nano Eacility	VEGA3 TESCAN		

Deep Reactive Ion Etching Bosch technology

(developed for MicroElectroMechanicalSystem

technology)

Timespot: timing tilted sensors

Single Pixel @ 50V

Test Beam: Experimental Setup

CERN SPS Testbeam with 180 GeV/c pions to measure efficiency and time resolution

UNIGE FE-I4 telescope to provide spatial information ($\sigma_{x,v} \approx 10 \ \mu m$) Two LGADs ($\sigma_t \approx 35$ ps) to provide the timing reference (and two SPADs with $\sigma_t \approx 20$ ps)

Waveform Example

Giuseppe lacobucci — Université de Genève

Tsukuba Global Science Week, September 27, 2022

- Time Of Arrival (TOA) as a time at constant fraction
- Distributions after time-walk correction
- Distributions are **Gaussian:** only $\approx 2-4$ % of entries in non-gaussian tails
- Simultaneous fit to extract time resolutions of the DUT, LGAD0, LGAD1

Testbeam results: Time Resolution

TCAD: transient space-charge effect

Transient 3D TCAD simulation of point like 55-Fe charge deposition in absorption layer:

TCAD: transient space-charge effect

- For high charge carrier densities (Fe55) the gain is suppressed compared to lower charge carrier densities (MIPs).
- Simulated suppression factor of Fe55 w.r.t. MIP charge compatible to calculation of compression factor from test-beam and Fe55 measurements.
- \rightarrow Measured gain for Fe55 significantly supressed by transient space charge effect.
- \rightarrow Need of fully self consistent transient TCAD simulations.

PicoAD simulation - 3D TCAD setup

Highly p-doped p-stops (floating)

- Highly n-doped pixel implants
- Lowly p-doped drift region
- Highly doped n-type gain layer implant
 Highly doped p-type gain layer implant
 Lowly p-doped absorption region

Highly p-doped substrate wafer

Critical TCAD aspects:

- Gain layer: meshing & modelling (Okuto, van Overstreaten etc...)
- Si/Ox interface in inter pixel region (top layer oxide stack not shown here)

PicoAD 3D TCAD - electrostatic potential

Electrostatic potential – 2D map:

- to increased thickness
- In inter-pixel region:
 - Potential maximum close to surface \bullet

Sensor depth [um]

PicoAD 3D TCAD - Electric field

- Significant E field in drift region, less compared to absorbtion region due to increased thickness \bullet
- In inter-pixel region: \bullet
 - Field minimum close to surface
 - Reduced field in drift & gain layer region \rightarrow

Giuseppe lacobucci — Université de Genève

Sensor depth [um]

lower gain in inter pixel region

Tsukuba Global Science Week, September 27, 2022

Electron drift velocity

Electron drift velocity – 2D map:

\rightarrow Electron drift velocity very close to saturation in full pixel volume (note the scale!) \rightarrow Important for precise timing

Giuseppe lacobucci — Université de Genève

Tsukuba Global Science Week, September 27, 2022

Weighting potential & field

Weighting potential – 2D map:

Weighting field – 2D map:

Active region: **Drift & absorbtion** region

Substrate

- No impact of gain layer on weighting potential & field
- High weighting field over full active thickeness
- Important for precise timing \rightarrow
- Highest weighting field in pixel implant corners due to largest potential drop

Active region: **Drift & absorbtion** region

Substrate

ISUKUDA GIODAI SCIELCE WEEK, September 27, 2022

First proof of concept prototype with non-optimal drift region thickness:

Thickness of epi-layer limited by production process \rightarrow Significant gain variations in inter-pixel region:

Next submission – optimisation of drift region

 \rightarrow Next production (with

Detection Efficiency

Selection of two triangles:

- representative of a whole pixel
- unbiased by telescope resolution

Results were also verified using two SPADs (but with much smaller statistics)

Giuseppe lacobucci — Université de Genève

Tsukuba Global Science Week, September 27, 2022

Time Resolution

Time-walk Correction

- Shift at 200 ps of the waveform to subtract low-frequency noise
- Time at constant fraction: 25% of max amplitude
- Amplitude-based time-walk correction for residual time walk

MONOLITH: First PicoAD Prototype

Prototypes without internal gain layer

200ps

1 and 0.5 mm² pixels

Discriminator output

110ps

- 30 pixels 500x500µm²
- 100ps TDC +I/O logic

50ps

- Hexagonal pixels 65µm and 130µm side
- Discriminator output

Sensor with no gain test beam results: JINST **P02019** 2022

PicoAD proof-of-concept prototype

36 ps

• Hexagonal pixels 65µm side • 30ps TDC +I/O logic • Analog channels

PicoAD Proof-Of-Concept Prototype

0^{2}

17 ps

- Same electronics as 2019 prototype
- Epitaxial layers + gain layer
- 4 different gain-layer doses

Gain measurements: arXiv:2206.07952, June 2022 Testbeam results: arXiv:2208.11019, August 2022

- Funded by the H2020 ERC Advanced grant 884447^[1] July 2020 - June 2025
- Monolithic silicon sensor able to:
 - precisely measure 3D spatial position
 - provide picosecond-level time resolution
- Implements:
 - Fast and low-noise SiGe BiCMOS electronics
 - Novel sensor concept: the Picosecond Avalanche Detector (PicoAD)

[1] MONOLITH H2020 ERC Advanced Project Web Page - https://www.unige.ch/dpnc/en/groups/giuseppe-iacobucci/research/monolith-erc-advanced-project/

The MONOLITH ERC Project

Tsukuba Global Science Week, September 27, 2022

Other UNIGE projects that use monolithic SiGe BiCMOS

2. FASER W-Si pre-shower

1. 100µPET SNSF SINERGIA

The 100µPET SNSF SINERGIA project

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

Giuseppe lacobucci • P.I.

Mateus Vicente

- System integration
- Laboratory test

Jihad Saidi

- System simulation
- Laboratory test

Didier Ferrere

- System integration
- Laboratory test

Lorenzo Paolozzi

- Sensor design
- Analog electronics

Yannick Favre

- Board design
- RO system

Franck Cadoux

- Mechanics
- FEA calculations

Michäel Unser • P. I.

Pol del Aguila Pla

 Statistical signal processing

Aleix Boquet-Pujadas

- Signal/image processing
- Physical modeling

Martin Walter • P. I.

Pablo Jané

- Nuclear Medicine
- PET imaging
- Translational imaging

Xiaoying Xu

- Molecular Biology
- In vivo studies
- Bioinformatics

The 100µPET SNSF SINERGIA project

The 100µPET Performance

High granularity FASER W-Si pre-shower

A. Sfyrla and G. lacobucci groups

Current FASER pre-shower:

2 layers of tungsten + scintillating detectors \implies no XY granularity

To have access to **two-photon final states**:

- High granularity and high dinamic range pre-shower based on six planes of monolithic pixels
- Discriminate TeV-scale EM showers
- Targeting data taking in 2024-2026 and during HL-LHC

High granularity FASER W-Si pre-shower

FASER preshower pre-production chip:

FLARE

- First engineering run produced by UNIGE in SiGe BiCMOS
- Three large ASIC (15x7.5 mm²) with alternative designs
- pixels with 65µm side (~100µm pitch)
- Delivered in July; presently under test

ADC ADC output before calibration Five pixels with largely varying response ecter After test-pulse calibration 20 10 12 Laser Intensity [A.U.]

The PicoAD[©] Monolithic <u>proof-of-concept</u> prototype works:

- Gain ≈ 20 for ⁵⁵Fe X-rays (space-charge effects, for X-rays, measured)
- Efficiency = 99.9 % at full sensor-bias voltage
- Time resolution $\sigma_t = (17.3 \pm 0.4)$ ps (although sensor not yet optimized for timing)

Ongoing activities include:

- (smaller pixel pitch; thicker drift layer; improved inter-pixel region)
- Optimization for timing of the PicoAD sensor design with TCAD to achieve ≤ 10 ps • Development of picosecond TDC for fully monolithic chip

Deliverable of MONOLITH project:

• Full-reticle chip with 50 μ m pitch and sub-10ps timing in Summer 2025

Summary & Outlook

Tsukuba Global Science Week, September 27, 2022

