RHIC Beam Energy Scan and Vorticity

TCHoU meeting 2023/6/27 Kosuke Okubo

Heavy ion collisions experiment

Baryon Chemical Potential μ_B

- Understand the properties of quark-gluon plasma(QGP)
- Map out QCD phase diagram
- Beam energy scan program

RHIC-STAR experiment

Relativistic Heavy Ion Collider (RHIC)

- Brookhaven National Lab. (NY)
- $\sqrt{s_{\rm NN}}$ = 7.7 200 GeV for A+A

p+p, p+Au, Au+Au, Cu+Cu,Cu+Au...

- Time Projection Chamber (TPC)
 - Main tracking detector, $|\eta| < 1.0$, full azimuth
- Time-Of-Flight (TOF)
 - Particle identification, $|\eta| < 0.9$, full azimuth
- Beam-Beam Counters (BBC)
 - Event plane reconstruction , 3.3<| η |<5.0
- Zero Degree Calorimeters (ZDC)
 - Event plane reconstruction using spectator neutrons, $|\eta|$ >6.3

Vorticity and magnetic field

✦In non-central collisions...

- The created matter should exhibit strong vorticity.
 - -Z.-T.Liang and X.-N. Wang, PRL94, 102301
- The strong magnetic field would appear in the initial state.

-D. Kharzeev, L. McLerran, and H. Warring, Nucl.Phys.A803, 227 (2008)

-McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

Global polarization

- Large orbital angular momentum transfers to the spin degrees of freedom:
 - Quarks and anti-quarks' spins are aligned with the angular momentum.
- Spin alignment by magnetic field:
 - Quarks and anti-quarks get aligned in the opposite direction due to the opposite signs of their magnetic moments.

How to measure the global polarization?

Parity-violating decay of hyperon

 Daughter proton preferentially decays along the Λ's spin (opposite for anti-Λ).

 $\Lambda \rightarrow p + \pi^-$ (BR:63.9%, c τ ~7.9cm)

 Polarization can be measured via the distribution of the azimuthal angle of the daughter proton (in the hyperon rest frame).

Projection onto the transverse plane

$$P_{H} = \frac{8}{\pi \alpha_{H}} \frac{\langle \sin(\Psi_{1} - \phi_{p}^{*}) \rangle}{Res(\Psi_{1})}$$

- STAR, PRC76, 024915(2007)

 α_H : decay parameter ($\alpha_{\Lambda} = 0.732 \pm 0.014$)

 $\Psi_1: 1^{st}$ -order event plane

 ϕ_p^* : azimuthal angle of the daughter proton in the Λ 's rest frame

 \vec{p}_{π}^{*}

P.A. Zyla et al. (PDG), Prog. Theor. Exp. Phys.2020, 083C01 (2020).

Collision energy dependence of P_H

• Positive polarization signals are observed.

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

$$\begin{split} P_{\Lambda(\overline{\Lambda})} &\simeq \frac{1}{2} \frac{\omega}{T} \pm \frac{\mu_{\Lambda} B}{T} \\ \omega &= (P_{\Lambda} + P_{\overline{\Lambda}}) k_B T / \hbar \sim 10^{21} s^{-1} \\ \mu_{\Lambda} &: \text{magnetic moment} \end{split}$$

T : temperature at thermal equilibrium(=160 MeV)

- Polarization increases with decreasing collision energy.
- No significant difference between Λ and anti-Λ.

Collision energy dependence of P_H

Global polarization of Λ hyperons in Pb+Pb collisions at $\sqrt{s_{NN}}$ = 2.76, 5.02 TeV.

2.76 TeV $P_{\Lambda}(\%) = 0.08 \pm 0.10(\text{stat.}) \pm 0.04(\text{syst.})$ $P_{\overline{\Lambda}}(\%) = -0.05 \pm 0.10(\text{stat.}) \pm 0.03(\text{syst.})$ 5.02 TeV $P_{\Lambda}(\%) = -0.13 \pm 0.11(\text{stat.}) \pm 0.04(\text{syst.})$ $P_{\overline{\Lambda}}(\%) = 0.14 \pm 0.12(\text{stat.}) \pm 0.03(\text{syst.})$

 \checkmark Global polarization continue to decrease at higher energies.

Vorticity at low energy

X.-G. Deng et al., PRC101.064908 (2020)

UrQMD model

- Angular momentum is the largest at 3 GeV.
- Vorticity disappears at $2m_N \text{GeV}$.
- ➡Global polarization is expected to be the largest at $2m_N \approx 1.9 < \sqrt{s_{NN}} < 7.7$ GeV.

Global polarization in low energies

- HADES experiment has measured in Au+Au at 2.4 GeV and Ag+Ag at 2.55 GeV.
- STAR experiment has measured in Au+Au at 3.0, 7.2 GeV.
 - ➡Global polarization increases with decreasing collision energy to 2.4 GeV.

Centrality dependence of P_H

- In most central collision, no initial angular momentum.
- The polarization decrease in more central collisions.

Rapidity dependence of P_H

 Polarization is expected to depend on rapidity but the prediction is different among the models.

Rapidity dependence of P_H

 Polarization does not show significant rapidity dependence within acceptance.

• Polarization in large rapidity region can be explored in the future forward upgrade.

Transverse momentum dependence of P_H

One might expect...

- Decrease at low p_T due to the smearing effect caused by scattering at the later stage of the collisions.
- Decrease at high p_T due to jet fragmentation.

No significant p_T dependence within uncertainties.

Global polarization of Ξ and Ω

P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

hyperon	decay mode	α _H	magnetic moment µ _H	spin
Λ (uds)	Λ→pπ ⁻ (BR: 63.9%)	0.732	-0.613	1/2
∃⁻ (dss)	Ξ-→Λπ- (BR: 99.9%)	-0.401	-0.6507	1/2
Ω- (sss)	Ω-→ΛK- (BR: 67.8%)	0.0157	-2.02	3/2

Global polarization measurement of the other particles.

- Different spin and magnetic moments
- Less feed-down in Ξ and Ω compared to Λ
- Could be different freeze-out
- Different valence s-quarks
- Less statistics of Ξ and Ω compared to Λ

W.-T. Deng and X.-G. Huang, PRC93.064907 (2016)

Ξ and Ω polarization measurement at 200 GeV

J, Adam et al. (STAR), PRL126, 162301 (2021)

- Global polarization of Ξ and Ω in Au+Au collisions at 200 GeV

 $\langle P_{\Lambda} \rangle = 0.24 \pm 0.03$ (stat.) ± 0.03 (syst.) [%]

 $\langle P_{\Xi} \rangle = 0.47 \pm 0.10$ (stat.) ± 0.23 (syst.) [%]

 $\langle P_{\Omega} \rangle = 1.11 \pm 0.87 \text{(stat.)} \pm 1.97 \text{(syst.)}$ [%]

- Ξ and Ω polarization could be larger than that of Λ
- Consistent with AMPT model calculation within uncertainties.
- Naive expectation
 - Lighter particles could be more polarized ($\Xi < \Lambda$)
 - Earlier freeze-out leads to larger polarization ($\Xi > \Lambda$)
- Feed-down effect : ~15-20% reduction for primary ΛP_H

E polarization at 27 and 54.4 GeV

- Global polarization have measured in Au+Au collisions at 27 and 54.4 GeV
 - Consistent with AMPT model within uncertainties
 - Ξ polarization is consistent with Λ polarization within uncertainties.

Centrality dependence of *E* polarization

- Ξ polarization increases in more central collisions as well as Λ polarization.
- Ξ polarization could be larger in peripheral collisions.

Global polarization in isobar collisions

- Global polarization in Zr+Zr and Ru+Ru
 - The mass number is the same but the proton number is different.
 - Initial magnetic field different (~10%)
 - Verification of the magnetic contribution
- System size dependence of the P_H
 - AMPT model expects global polarization is larger in Cu+Cu than Au+Au collisions.
 - The timing of the Λ production depends on the collision system. (Cu+Cu < Cu+Au < Au+Au)

Global polarization in isobar collisions

Global polarization of $\Lambda(\bar{\Lambda})$ hyperons in Au+Au collisions at 200 GeV

- Significant global polarization are observed, P_{Λ} and $P_{\bar{\Lambda}}$ increase with centrality.
- No significant difference between P_{Λ} and $P_{\bar{\Lambda}}$ in Ru+Ru and Zr+Zr collisions.
- $P_{\Lambda+\bar{\Lambda}}$ are consistent between Ru+Ru and Zr+Zr collisions.

Comparison with isobar and Au+Au collisions

- Global polarization of Λ and Λ are consistent between isobar and Au+Au collision system, no collision system dependence is observed.

Polarization along the beam direction : P_z

- Stronger flow in in-plane than in out-of-plane cloud make local polarization along beam axis
- Longitudinal component, P_z, can be expressed with $\langle \cos \theta_p^* \rangle$

$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} (1 + \alpha_{\rm H} \mathbf{P}_{\mathbf{H}} \cdot \mathbf{p}_p^*)$$

$$\langle \cos \theta_p^* \rangle = \int \frac{dN}{d\Omega^*} \cos \theta_p^* d\Omega^*$$

$$= \alpha_{\rm H} P_z \langle (\cos \theta_p^*)^2 \rangle$$

$$\therefore P_z = \frac{\langle \cos \theta_p^* \rangle}{\alpha_{\rm H} \langle (\cos \theta_p^*)^2 \rangle}$$

$$= \frac{3 \langle \cos \theta_p^* \rangle}{\alpha_{\rm H}} \quad \text{(if perfect detector})$$

(a) \bullet \bullet Ψ_2

arXiv:2303.09074

 $\alpha_{\!H}$:decay parameter

 $\theta_p^*: \theta$ of daughter proton in Λ rest frame

Centrality dependence of *P^z*

- Local polarization is larger in peripheral collisions.
 - v2 is large in peripheral collisions
 - v2 has finite values due to the initial density fluctuations in most central collisions but Pz is zero within the uncertainty.
 - Consistent with BW model but AMPT model predicts opposite trend

Hydrodynamic model with shear-induced contribution can describe the result

vorticity :
$$\omega_{\rho\sigma} = \frac{1}{2} \left(\partial_{\sigma} u_{\rho} - \partial_{\rho} u_{\sigma} \right)$$
 shear : $\Xi_{\rho\sigma} = \frac{1}{2} \left(\partial_{\sigma} u_{\rho} + \partial_{\rho} u_{\sigma} \right)$

No strong collision system and energy dependence

- v_2 in 5.02 TeV Pb+Pb is ~60% larger than that in 200 GeV isobar

Summary and outlook

Summary

- Global and local polarization of hyperons has been observed in heavy-ion collisions
 - Most vortical fluid created in heavy-ion collisions ($\omega \sim 10^{21} s^{-1}$)
 - Differential dependence of global/local polarization has been measured
 - Ξ and Ω global polarization

Outlook

- High statistics data ob BES-II 7.7 19.6 GeV and FXT 3 - 7.7 GeV
- Polarization in large rapidity region can be explored in the future forward upgrade

BUR2020, STAR Note SN0755

Back up

26

Feed-down effect

✓観測されるΛ粒子のうち約60%が重い粒子の崩壊によって生成される。

√親粒子の偏極は娘粒子(∧粒子)に引き継がれる。

$$\mathbf{S}^*_{\Lambda} = C \mathbf{S}^*_R$$
 $\mathbf{S}^*_{\Lambda} = C \mathbf{S}^*_R$
 $\mathbf{S}^*_{\Lambda R} = C \mathbf{S}^*_R$
 $\mathbf{S}^*_{\Lambda R} : 親粒子のスピン$
 $f_{\Lambda R} : ラムダ粒子のうち粒子Rの崩壊によって生成されるラムダ粒子の割合
 $\mu_R : 粒子Rの磁気モーメント$
 $\mathbf{S}^2_{\Lambda R} : 1)$
 $\mathbf{S}^2_{\Lambda R} : 2 \sum \left(f_{\Lambda R} - 1\right) \left(f_{\Lambda R} - 1\right)$
 $\mathbf{S}^2_{\Lambda R} : 2 \sum \left(f_{\Lambda R} - 1\right) \left(f_{\Lambda R} - 1\right) \left(f_{\Lambda R} - 1\right)$$

$$\begin{pmatrix} \varpi_{c} \\ B_{c}/T \end{pmatrix} = \begin{bmatrix} \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) S_{R}(S_{R} + 1) & \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) (S_{R} + 1) \mu_{R} \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) & \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) (S_{\overline{R}} + 1) \mu_{\overline{R}} \end{bmatrix}^{-1} \begin{pmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \end{pmatrix}.$$

✓ ラムダ粒子のグローバル偏極は15 - 20 %程度 抑制される。

Decay	C
parity-conserving: $1/2^+ \rightarrow 1/2^+ 0^-$	-1/3
parity-conserving: $1/2^- \rightarrow 1/2^+ 0^-$	1
parity-conserving: ${}^{3}/{}^{2}^{+} \rightarrow {}^{1}/{}^{2}^{+} 0^{-}$	1/3
parity-conserving: $^{3}/_{2}^{-} \rightarrow ^{1}/_{2}^{+} ^{-} ^{-}$	-1/5
$\Xi^0 \rightarrow \Lambda + \pi^0$	+0.900
$\Xi^- \rightarrow \Lambda + \pi^-$	+0.927
$\Sigma^0 \rightarrow \Lambda + \gamma$	-1/3

Time dependence of vorticity

X.-G. Deng et al., PRC101.064908 (2020)

Vorticity and directed flow

S. Voloshin, EPJ Web Conf. 171, 07002 (2018)

✓The slope of the directed flow at mid-rapidity is likely correlated with the vorticity.

- Global polarization and the negative slope of directed flow of pions have a similar collision energy dependence.