TCHoU Workshop (Quark-Nuclear Matters)

Fluctuation analysis in STAR BES-II

Fan Si (司凡)

University of Science and Technology of China

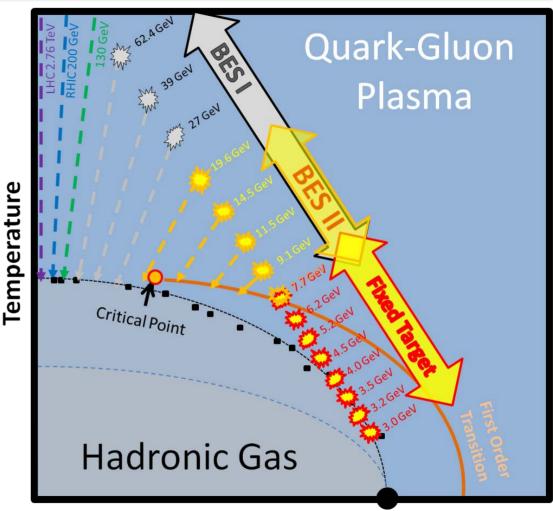
University of Tsukuba

March 29, 2024

Outline

• Introduction

• STAR BES and results


•Upgrades in BES-II

• Challenges in FXT

• Summary

Introduction: QCD phase structure

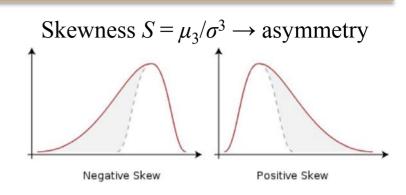
- Crossover at μ_B = 0
 Expected by lattice QCD
 T = (156 ± 1.5) MeV
- 1st-order phase transition
 - At higher $\mu_{\rm B}$
 - Expected by QCD-based model
- QCD critical point? Predicted!
 Existence and possible location
- Experimental scan of QCD phase diagram • By varying collision energy $\sqrt{s_{\rm NN}}$

Baryon Chemical Potential μ_{B}

STAR and CBM, arXiv:1609.05102; Y. Aoki, Nature 443, 675-678 (2006); HotQCD, PLB 795, 15-21 (2019)

Fan Si (USTC / Tsukuba)

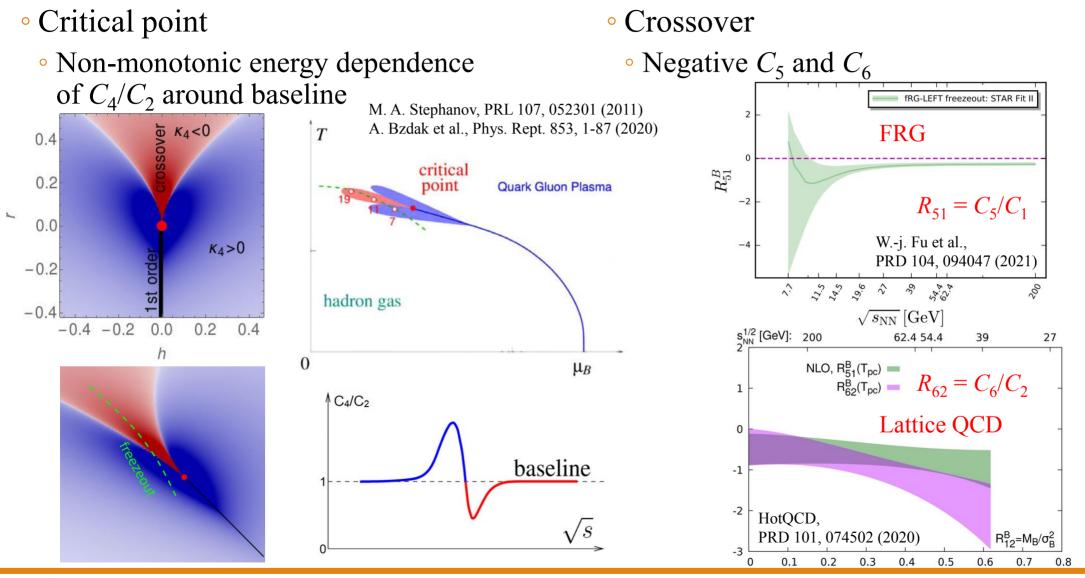
Introduction: experimental observables


• Higher-order cumulants of net-particle multiplicities • Proxies for conserved charges (B, Q, S)• $\mu_r = \langle (N - \langle N \rangle)^r \rangle$: *r*th-order central moment $= VT^3\chi_1^q$ $\circ C_1 = M = \langle N \rangle$ $= VT^3\chi_2^q \sim \xi^2$ $\circ C_2 = \sigma^2 = \mu_2$ $= VT^3\chi_3^q \sim \xi^{4.5}$ • $C_3 = S\sigma^3 = \mu_3$ $= VT^3 \chi^q_{\scriptscriptstyle A} \sim \xi^7$ • $C_4 = \kappa \sigma^4 = \mu_4 - 3\mu_2^2$ $= VT^3\chi_5^q \sim \xi^{9.5}$ $\circ C_5 = \mu_5 - 10\mu_3\mu_2$ • $C_6 = \mu_6 - 15\mu_4\mu_2 - 10\mu_3^2 + 30\mu_2^3 = VT^3\chi_6^q \sim \xi^{12}$ • Sensitive to correlation length (ξ)

• Directly connected to susceptibilities (χ_r^q , q = B, Q, S)

•
$$\frac{C_3^q}{C_2^q} = S\sigma = \frac{\chi_3^q}{\chi_2^q}, \frac{C_4^q}{C_2^q} = \kappa\sigma^2 = \frac{\chi_4^q}{\chi_2^q}$$

Fan Si (USTC / Tsukuba)


M. A. Stephanov, PRL107, 052301 (2011)

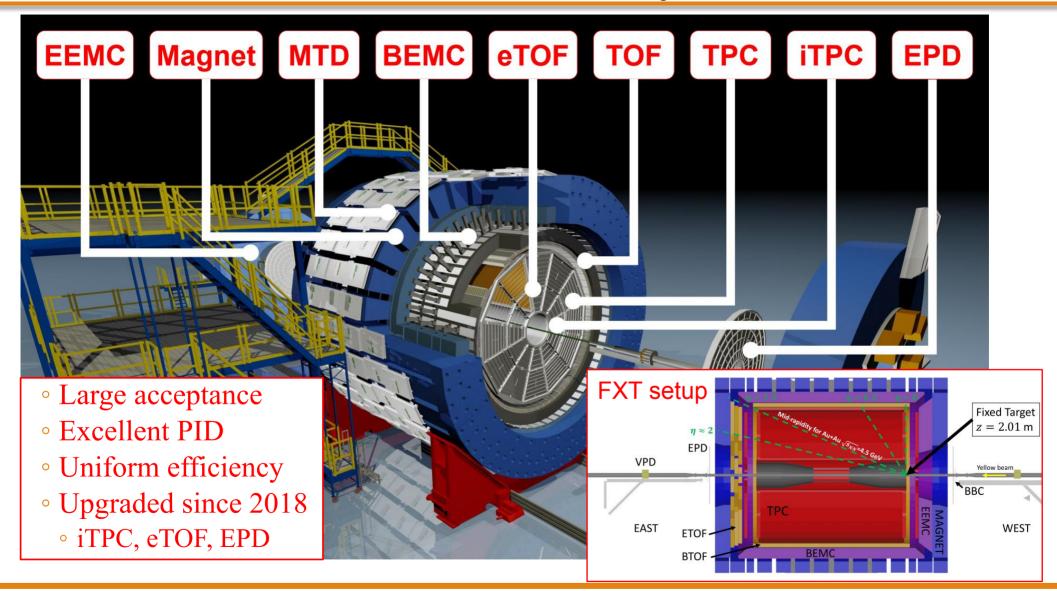
Gaussian: $C_r = 0$ (r > 2) Skellam (Poisson – Poisson): $C_3/C_1 = C_4/C_2 = C_5/C_1 = C_6/C_2 = 1$

Kurtosis $\kappa = \mu_4 / \sigma^4 - 3 \rightarrow$ sharpness ..2 0 c. -0.5937f W, -1 -1 $\kappa > 0$ $\kappa < 0$ M. A. Stephanov, PRL 102, 032301 (2009) M. Asakawa et al., PRL103, 262301 (2009) -5 -4 -3 -2 -1

Introduction: predicted signals

Fan Si (USTC / Tsukuba)

Beam Energy Scan program

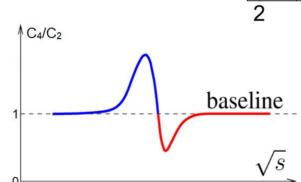

• To map QCD phase diagram: BES-I 2010 – 2017; BES-II (including FXT) 2018 – 2021

√s _{NN} (GeV)	# Events	Year 20xx (BES-I/II)	$\mu_{\rm B}$ (MeV)
200	238M/ 138M/20B	10/ 19/23–25	25
62.4	47M	10	73
54.4	550M	17	83
39	86M	10	112
27	30M/ 555M	11/ 18	156
19.6	15M/ 478M	11/ 19	206
17.3	256M	21	230
14.6	324M	19	262
14.5	20M	14	264
11.5	6.6M/ 235M	10/ 20	315
9.2	162M	20	373
7.7	3M/ 101M	10/ 21	420

$\sqrt{s_{NN}}$ (GeV)	# Events	Year 20xx (FXT)	μ _B (MeV)
13.7	51M	21	276
11.5	52M	21	315
9.2	54M	21	373
7.7	51M/112M	19/20	420
7.2	155M/317M/89M	18/20/21	440
6.2	118M	20	487
5.2	103M	20	541
4.5	108M	20	589
3.9	53M/117M	19/20	633
3.5	116M	20	666
3.2	201M	19	699
3.0	258M/2.1B	18/21	720

Fan Si (USTC / Tsukuba)

STAR detector system



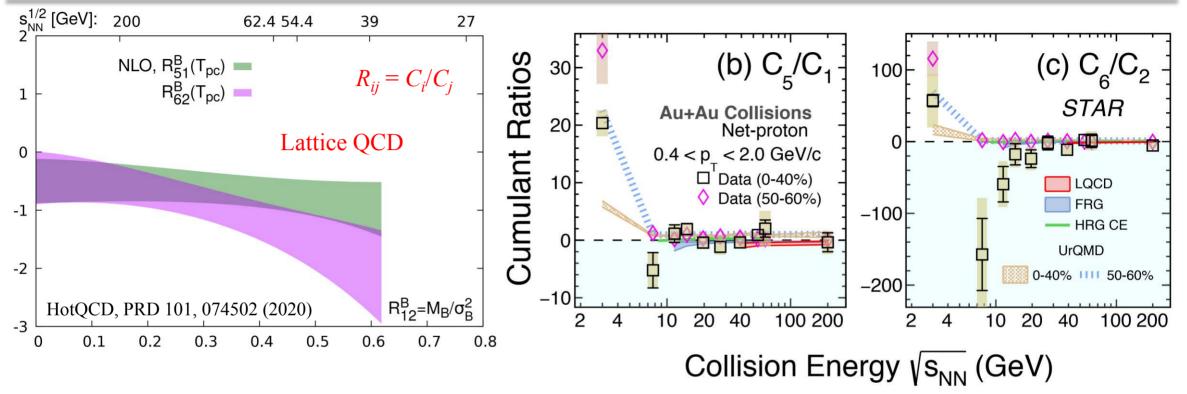
Fan Si (USTC / Tsukuba)

STAR published measurements (BES-I)

• Non-monotonic energy dependence (3.1σ)

- Qualitatively consistent with prediction considering critical point
- Deviates from non-critical models
- Significant suppression at $\sqrt{s_{NN}} = 3.0 \text{ GeV}$
 - Reproduced by UrQMD model (baryon-conservation driven)
 - Predominantly hadronic matter
- Critical region could only exist at $\sqrt{s_{NN}} > 3.0$ GeV if created in HIC

Central Au + Au Collisions STAR (0 - 5%) net-proton proton (|y| < 0.5, 0.4 < p_(GeV/c) < 2.0) Ratio 0 HRG net-proto<u>n</u> -1 (-0.5 < y < 0)UrOMD proton $(0.4 < p_(GeV/c) < 2.0)$ 20 50 5 10 100 200 Collision Energy $\sqrt{s_{_{NN}}}$ (GeV) STAR, PRL 126, 092301 (2021) STAR, PRC 104, 024902 (2021)

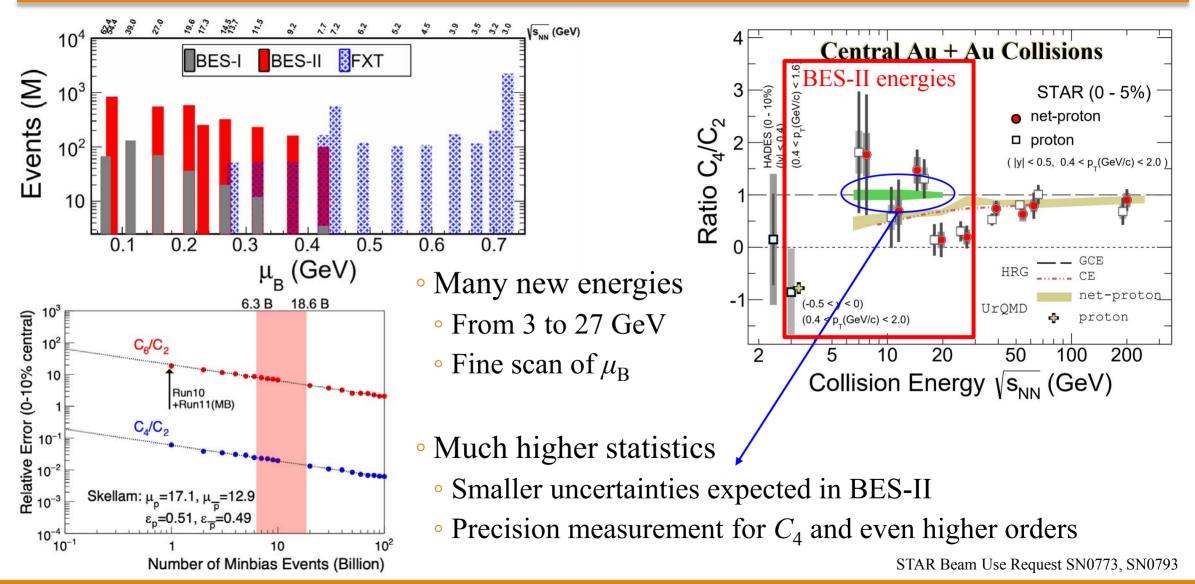

Fan Si (USTC / Tsukuba)

TCHoU Workshop (Quark-Nuclear Matters)

STAR, PRL 128, 202303 (2022)

STAR, PRC 107, 024908 (2023)

STAR published measurements (BES-I)

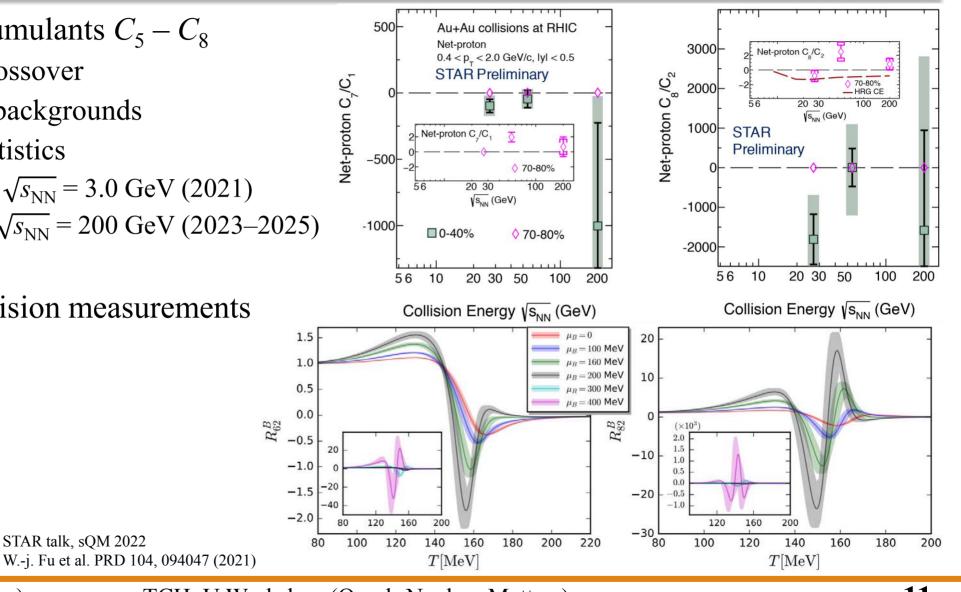


• C_5/C_1 (0-40% at $\sqrt{s_{\rm NN}} = 7.7 - 200$ GeV) fluctuates around zero at all energies

- Increasingly negative C_6/C_2 (0-40%) as collision energy $\sqrt{s_{NN}}$ decreases down to 7.7 GeV • Trend consistent with LQCD calculation (UrQMD always positive or ~ 0)
- Positive C_5/C_1 & C_6/C_2 at 3.0 GeV, obviously different trend

STAR, PRL 130, 082301 (2023)

Upgrades in BES-II: energies and statistics

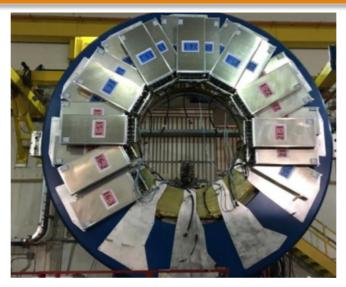


Fan Si (USTC / Tsukuba)

Hyper-order cumulants: search for crossover

- Hyper-order cumulants $C_5 C_8$
 - Sensitive to crossover
 - Vulnerable to backgrounds
 - Hungry for statistics
 - 2.1B events at $\sqrt{s_{NN}} = 3.0 \text{ GeV} (2021)$
 - 20B events at $\sqrt{s_{NN}} = 200 \text{ GeV} (2023-2025)$

STAR talk, sQM 2022


• May have precision measurements in **BES-II**

Fan Si (USTC / Tsukuba)


Upgrades in BES-II: new detectors

- iTPC (since 2019)
 - Improves dE/dx measurement
 - Extends η_{max} from 1.0 to 1.5
 - For FXT, η_{max} from 2.0 to 2.5
 - Lowers $p_{\rm T}$ cut-in from 125 to 60 MeV/c

- eTOF (since 2019)
 - Forward rapidity coverage
 - Crucial in fixed-target program
 - PID at $1.05 < \eta < 1.50$
 - For FXT, $1.52 < \eta < 2.24$
 - Provided by FAIR-CBM

- EPD (since 2018)
 - $2.14 < |\eta| < 5.09$
 - Improves trigger
 - Better event plane reconstruction
 - Better centrality determination

iTPC: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0619 eTOF: STAR and CBM eTOF Group, arXiv:1609.05102 EPD: J. Adams et al., NIMA 968, 163970 (2020)

Proton acceptance plots in FXT mode

- Standard analysis window (red box) • $0.4 \text{ GeV}/c < p_T < 2 \text{ GeV}/c$ • -0.5 < y < 0
- TOF is required at high momenta where proton purity < 90%
- Nearly full acceptance at $\sqrt{s_{NN}}$ up to 4.5 GeV
 - Limited mid-rapidity coverage at higher energies

• Crucial eTOF for proton identification at $\sqrt{s_{NN}}$ from 3.5 GeV

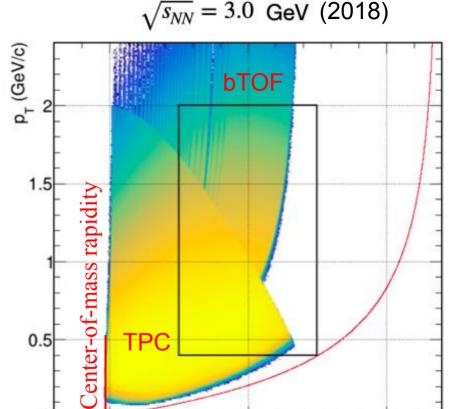
y-y

0.2 0.4

y-y_m

0.4 .2 -1 -0.8-0.6-0.4

STAR poster, QM 2023

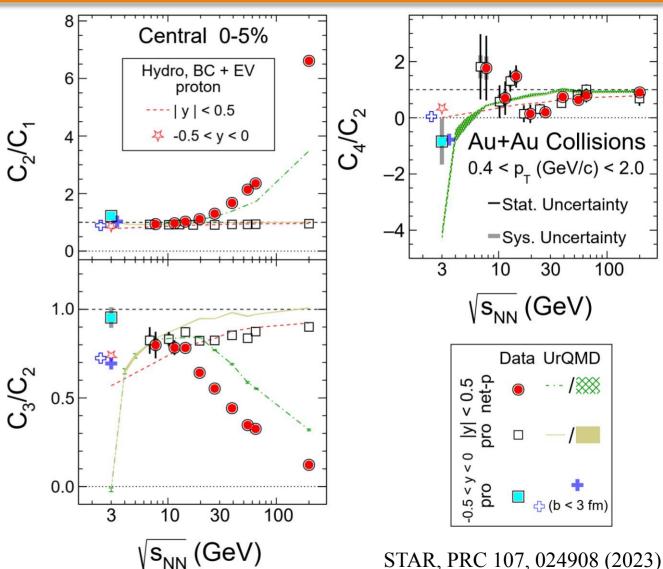

y-y___

p_T (GeV/c) √s_{NN}=3.5 GeV √s_{NN}=3.9 GeV √s_{NN}=3.2 GeV VS_{NN}=4.5 GeV 104 Barrel 1.5 time-of-flight 10^{3} Endcap time-of-fligh 10² Time Projection Chamber p_T (GeV/c) 1000 √s_{NN}=6.2 GeV √s_{NN}=7.7 GeV √s_{NN}=5.2 GeV Standard VS_{NN}=7.2 GeV analysis window 10^{3} 10² Data not yet available

y-y___

Upgrades in BES-II: larger acceptance

- For FXT $\sqrt{s_{NN}} = 3.0$ GeV in 2018 (published) • No iTPC installed
 - TPC coverage: $-2.0 < \eta_{\text{lab}} < 0$
 - Proton acceptance: -0.5 < y < 0
 - Only half mid-rapidity window covered
- For FXT since 2019 (analysis ongoing)
 Both iTPC and eTOF are installed
 TPC including iTPC: -2.5 < η_{lab} < 0
- For FXT $\sqrt{s_{\text{NN}}} = 3.0 \text{ GeV in } 2021 \text{ (2.1B events)}$
 - Possible proton measurement within -0.5 < y < 0.5
 - Red curve: expected acceptance boundary with iTPC and eTOF



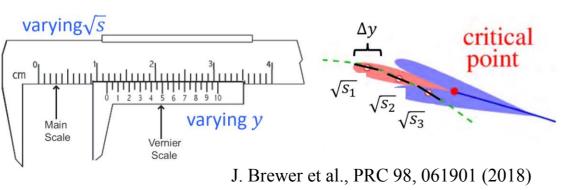
y-y_{cm}

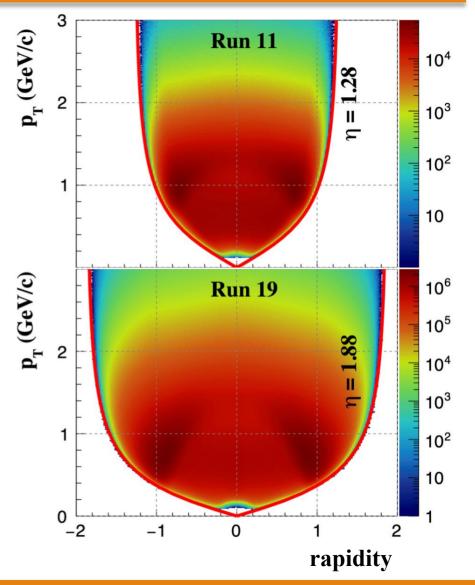
Comparison between half/full mid-rapidity

- From models for 3.0 GeV, clear difference between calculations in half and full mid-rapidity windows
- Necessary to learn the difference between -0.5 < y < 0 and |y| < 0.5in experiments

	C_{4}/C_{2}
Data $(-0.5 < y < 0)$	~-1
UrQMD ($-0.5 < y < 0$)	~-1
UrQMD ($ y < 0.5$)	~-4
Hydro ($-0.5 < y < 0$)	~ 1
Hydro ($ y < 0.5$)	~ 0

Fan Si (USTC / Tsukuba)

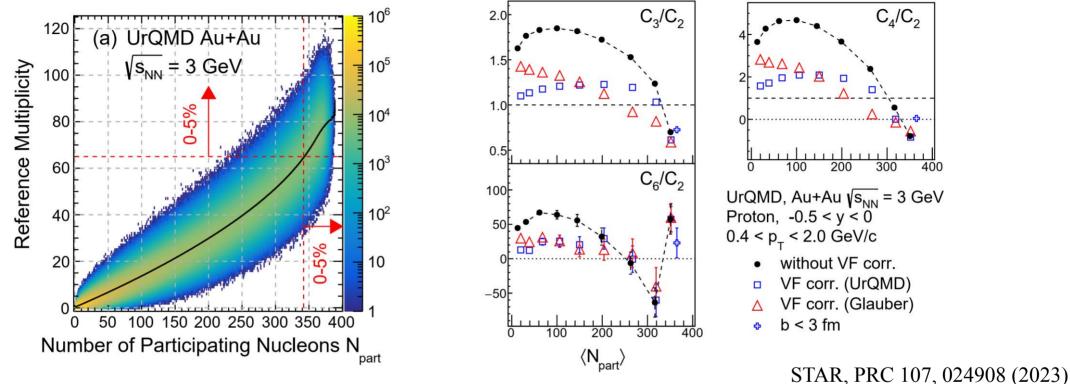

Upgrades in BES-II: larger acceptance


• Acceptance is much larger thanks to iTPC

- Proton rapidity extension
 - |y| < 0.5 in BES-I, 0.7 may be available in BES-II
 - To observe correlations in larger system size

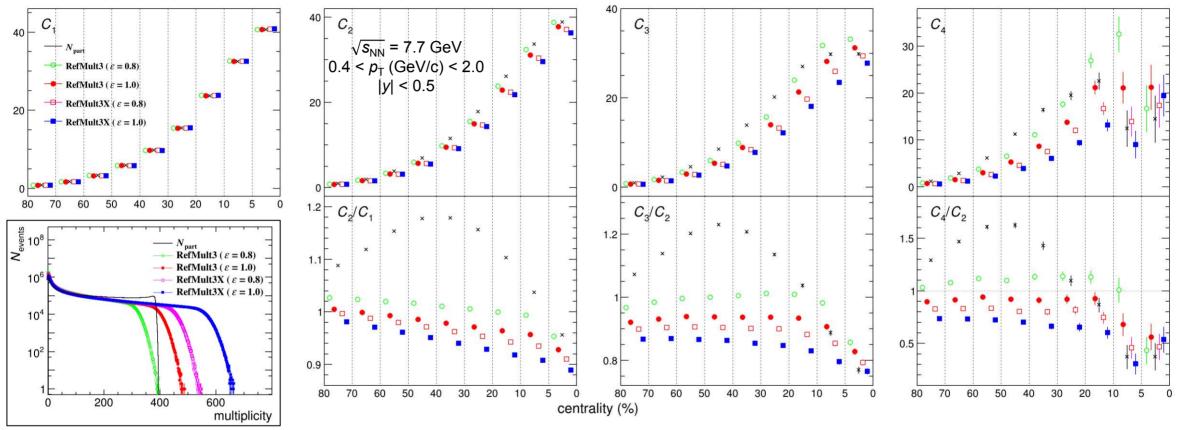
Rapidity scan

- Sensitive probe for critical region
- Detailed scan for the QCD phase diagram



Fan Si (USTC / Tsukuba)

Upgrades in BES-II: better centrality resolution

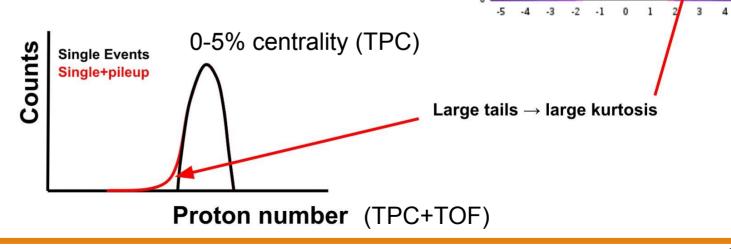

- For net-proton fluctuation measurements, centrality is determined by the reference multiplicity excluding (anti)protons
 - To avoid auto-correlation
- In BES-I, multiplicity (called RefMult3) is defined by π^{\pm} and K^{\pm} within $|\eta| < 1.0$
- With the extended acceptance, RefMult3X is defined by π[±] and K[±] within |η| < 1.6
 Better centrality resolution => smaller volume fluctuation => contribution to cumulants
- Effect should be checked both in experiments and models

UrQMD simulation: volume fluctuation effect

- $\circ N_{\text{part}}$ is a characterization of the system volume
- Effect of volume fluctuation
 - The centrality by reference multiplicity selects different events from the centrality by N_{part}
 - N_{part} varies even in each reference multiplicity bin

UrQMD simulation: centrality resolution effect

- Centrality resolution from worst to best: $\bigcirc < \bigcirc < \bigcirc < \bigcirc$
 - Clear ordering: better resolution => lower cumulants/ratios (except C_4/C_2 at 0-5%)
- Comparisons needed in experimental measurements


Challenges in FXT: pileup and timing issue

- Pileup events: formed by multiple collisions in a short time (not separated by detector)
 Higher pileup fraction in FXT than collider experiments
- TOF has better timing precision and is faster than TPC
 - TPC reconstructs tracks from pileup events, but TOF often misses them due to timing offset
- TPC multiplicity for centrality
- TPC+TOF for proton ID

STAR talk, DNP 2023

Fan Si (USTC / Tsukuba)

• A tail on the left-hand side of proton number distribution in central events

TCHoU Workshop (Quark-Nuclear Matters)

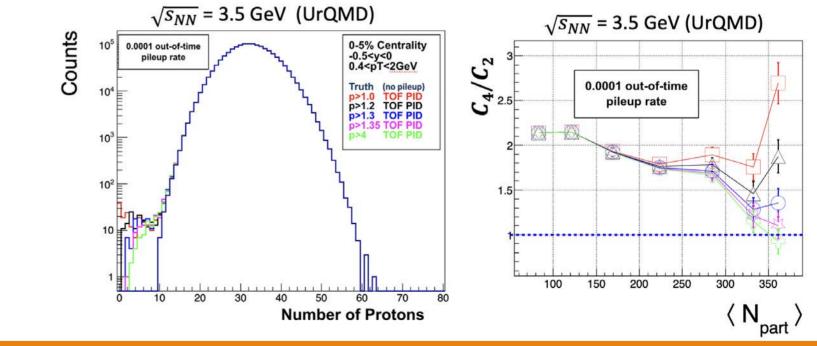
PDFs with varying kurtosis values

-0.59376

0.8

0.7

0.5


0.4

0.1

UrQMD simulation: pileup and timing issue

• In experiments, we require TOF PID for tracks above a certain momentum

- In UrQMD, we simulate pileup process and TOF PID
- Instability of cumulants observed during variation of momentum threshold for TOF PID
- Pileup events should be carefully rejected if we require TOF for PID

Fan Si (USTC / Tsukuba)

STAR talk, DNP 2023

Challenges in FXT: η gap between b/eTOF

- An acceptance gap between bTOF and eTOF • $1.45 \leq \eta_{\text{lab}} \leq 1.55$
 - No TOF available for PID
- Solutions
 - Check TPC proton purity in the gap
 - Test removing the gap from the acceptance
- Model studies also needed for the effect

Summary

- In BES-II, STAR has collected lots of data from $\sqrt{s_{NN}} = 3.0$ to 27 GeV • FXT mode: 3.0 - 13.7 GeV; collider mode: 7.7 - 27 GeV
- Several upgrades in BES-II
 - New energies: 3.2 7.2, 9.2, 17.3 GeV; much higher statistics
 - New detectors, larger acceptance, and better centrality resolution
- A few challenges in FXT
- BES-II fluctuation measurements are ongoing.

Thank you for your attention!