蓄積リングによる不安定核の質量精密測定と

クォーク・核物質研究部門 山口 貴之(クロスアポイントメント) 埼玉大学 理工学研究科 2018年6月4日 宇宙史センター構成員会議

RI Beam Storage Rings Worldwide in Operation

RIBFのRIビーム強度は世界ー

RI Beam Factory in RIKEN

Rare-RI Ring: R3

A dedicated device for precision mass measurements

Rare RI: Very low production rates, ~1/day Short lived nuclides, ~ms

OEDO-SHARAQ

BigRIPS

What is new?

測定したい稀少なRIだけ選び出せる

How to inject beam into R3 Isotope-Selectable Self-Triggered Injection (ISSI)

Single ion storage

Isochronous Mass Spectrometry

 $T_0 = 2\pi \frac{m_0}{qB}$

(Start)

- drd

基準の粒子(m₀)に対して等時性に調整する 測定粒子は厳密には等時性ではないため 速度の補正が必要

Sto

and PID

First Mass Measurement

With known masses

²³⁸U 345 MeV/u → ⁷⁸Ge 168 MeV/u fission fragments

等時性粒子の⁷⁸Geは運動量によらずに周期一定

D. Nagae

First Mass Measurement

With known masses

²³⁸U 345 MeV/u → ⁷⁸Ge 168 MeV/u fission fragments

$$\left(\frac{m}{q}\right)_{1} = \left(\frac{m}{q}\right)_{0} \frac{T_{1}}{T_{0}} \sqrt{\frac{1-\beta_{1}^{2}}{1-\left(\frac{T_{1}}{T_{0}}\beta_{1}\right)^{2}}}$$

D. Nagae

補正のためのβの出し方が大事 m/q accuracy ~ several x 10⁻⁶

D. Nagae, S. Omika

Single ion storage

いかに等時性がよく成り立っているか

First long time storage of RI beam: 6 sec

F. Suzaki

Storage-ring mass spectrometry

For rare isotopes: low production rates/short lived

i) High efficiency

ii) Single ion sensitivity

iii) High resolution

Potential for new masses with R3

Present condition ²³⁸U 50 pnA Latest R3 condition ⁷⁸Ni 10 → 3 days (NP1612 estimations)

・H30年度、秋から実験スタート

i.中性子過剰Ni同位体の質量 (74Ni~)

ii.中性子過剰A~130: Rh, Pd, Agの質量

