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In 1982 Shechtman et al. [5]

found Bragg peaks with 10-th fold

symmetry in rapidly cooled Mn-Al

alloy, which is later called ‘quasi-

crystal’. Shechtman won 2011 Novel

prize by this discovery. Recently

a lot of quasi-crystals are found in

much larger scale. Mathematics of
Aperiodic Order is a new branch of

mathematics, which aims at giving

mathematical models of them.
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Figure 1: Dodecagonal tiling in mesoporous silica

Nature, Vol 487: 2012, Xiao, Fujita, Miyasaka, Sakamoto,

Terasaki
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Figure 2: Mosaic two-lengthscale quasicrystals

Nature, Vol 506: 2014, Dotera, Oshiro & Ziherl
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In number theory, Riemann zeta function play a crucial role:
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We consider s = σ+
√
−1t to be a complex variable. Then we
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can formally write:

ζ(s) = 1 + exp(−s log 2) + exp(−s log 3) + . . .

=
∞∑

n=1

exp(−σ log n− t log n
√
−1)

=
∞∑

n=1

an exp(2π
√
−1t/λn)

with λn = −2π/ log n. Then exp(2πt
√
−1/λn) has a period

λn. In this way, we may think ζ is a general type of Fourier
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series:

f(t) ∼
∞∑

n=0

an exp(2π
√
−1nt).

Motivated by Riemann zeta function, Bohr constructed a

theory of generalized Fourier expansion, called almost periodic
function.

A key observation is that such f which is convergent and

uniformly bounded are characterized by almost periodicity:

For any ϵ > 0 and there exists L’s that |f(t)−f(t−L)| < ϵ

for any t and such L appears with bounded gaps.

A point set X is almost periodic if for any ε > 0 the set of

– Typeset by FoilTEX – 6



almost period t, that satisfies

densX \ (X − t+B(0, ε)) < ε

is relatively dense in Rd. Here relatively dense means that t

appears with bounded gaps.

This definition is in fact equivalent to pure point

diffractiveness of point sets. Thus we may use this as a

mathematical definition of quasicrystal.

Almost periodic Delone set is the mathematical model of

QC (Baake-Moody[2], Gouéré [4]).
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Cut and Project set (Model set) is generated by cut and

project scheme, i.e., the set generated by a projection of higher

dimensional lattice (LCA group) points stay in some irrational

band.
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A well known example of aperiodic tiles is due to Penrose

which consists of two kinds of tiles: kites and darts with

matching rules as in Figure 3:

Figure 3: Penrose Tile
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that the circular markings must match across the boundary

like:
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Figure 4: Penrose tiling
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To show that Penrose tiles are aperiodic, we have to show

two things.

• They admit a tiling.

• Each tiling generated by kite and dart has no period.

de Bruijn [3] showed that Penrose tiling is really a good

model of quasi-crystal by showing that its reference point set

is understood by cut and projection. More precisely such

Delone set is the projection of 5-dim lattice points which lies in

some irrational band. This assures that the diffraction pattern

of Penrose tiling is pure diffractive.
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Figure 5: Penrose Diffraction
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How can we check that tiling gives a quasicrystal
structure ?

Short Answer: Use my Mathematica program to check

overlap coincidence.

http://math.tsukuba.ac.jp/~akiyama/Coincidence/Coincidence.html
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Self affine tiling is made of prototiles A = {T1, . . . , Tm}
which satisfies a set equation ( substitution rule ):

QTj =
∪
i

Ti +Dij

where Q is an expanding matrix and Dij is a finite set of

translations.

We use spectral theory of tiling dynamical system. From

these data Q andDij we can check that this gives a quasicrystal

structure. Akiyama-J.-Y.Lee [1] gave a practical algorithm

on overlap coincidence and implemented into Mathematica

program.
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Summary

Quasi-crystal is explained better by an aperiodic tile set

which produces almost periodic points. For self-affine tilings,

• Bragg peak
?↔ Non weak mixing ⇐⇒ X: Meyer set ⇐⇒ Q:

Pisot family

• Pure pointed diffraction ⇐⇒ Pure discrete spectrum ⇐⇒
Overlap Coincidence ⇐⇒ Cut and projection

• Overlap coincidence can be confirmed by Mathematica.
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