

Research Institute for Innovation in Sustainable Chemistry

2015.3.12 筑波大学

金ナノ粒子における触媒作用の 発現メカニズム

産業技術総合研究所 環境化学技術研究部門

藤谷忠博

Pt表面では、水素分子は不安定 → 水素は解離する Au表面では、水素分子は安定 → 水素は解離しない

Hammer and Nørskov, Nature 376, 238-240, 1995.

Au/TiO₂触媒(析出沈殿法・400 ℃焼成)

Research Institute for Innovation in Sustainable Chemistry

金を5 nm以下のナノ粒子として酸化チタンなどに分散・固定化すると パラジウムや白金触媒にはないユニークな触媒特性を発現

Haruta, Tsubota, Kobayashi, Kageyama, Genet, Delmon, J. Catal. 144, 175-192, 1993.

CO酸化に対する水分の影響

少量の水が一酸化炭素の酸化活性を促進

Date, Okumura, Tsubota, Haruta, Angew. Chem. Int. Ed. 43, 2129-2132, 2004.

金粒子径の効果:2 nmが境界

Haruta, The Chemical Record, 3, 75-87, 2003.

触媒

➤ Au/TiO₂(110)モデル触媒
 ➤ Au(111), TiO₂/Au(111)

反応 ➤ CO酸化反応

Haruta, The Chemical Record, 3, 75-87, 2003.

TiO₂(110)単結晶基板(8 x 8 x 0.5 mm)へAu蒸着

アーク電圧:70 V, コンデンサ:360µF-6600µF, 温度:300 K, 圧力:10⁻⁹ Torr

実験装置

Fujitani, Nakamura, Akita, Okumura, Haruta, Angew. Chem. Int. Ed. 48, 7862-7866, 2009.

300 K, CO: 25 Torr, O₂: 625 Torr, H₂O: 0-0.5 Torr

CO酸化反応のアーレニウスプロット

M. Haruta, The Chemical Record, 3, 75-87 (2003).

CO: 25Torr, O₂: 625Torr, H₂O: 0.1 Torr, Reaction temp.: 270 - 400 K

Au/TiO₂(111)表面は、Au/TiO₂触媒の良いモデル

■AIST Au/TiO₂(110)上でのCO₂生成速度とAu粒子径の関係

Research Institute for Innovation in Sustainable Chemistry

: 300K, CO: 25Torr, O₂: 625Torr, H₂O: 0.1 Torr
 : 400K, CO: 25Torr, O₂: 625Torr, H₂O: 0.1 Torr

活性化エネルギーは変化無し → 金のサイズが違っても<u>活性点は同じ</u>

① サイズ効果なし、② 活性点当たりの活性(TOF)は一定

TOF–S: by normalizing the number of CO_2 molecules formed per second to <u>the total number of exposed Au atoms at the gold particles</u>.

TOF-S, TOF-P vs Au particle size

活性点は、AuとTiO₂の接合界面

低温(< 320 K)での活性点と反応機構

AIST

Au-TiO₂接合界面が活性点(Au^{δ+}-O^{δ-}-Ti) H₂Oが必須

Research Institute for Innovation in Sustainable Chemistry

* Bongiorno, A.; Landman, U. *Phys. Rev. Lett.* 2005, 95, 106102-1-4.
Lee, S.; Molina, L. M.; López, M. J.; Alonso, J. A.; Hammer, B.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Pellin, M. J.; Vajda, S. *Angew. Chem. Int. Ed.* 2009, 48, 1467-1471.
Huang, J.; Akita, T.; Faye, J.; Fujitani, T.; Takei, T.; Haruta, M. *Angew. Chem. Int. Ed.* 2009, 48, 7862-78566.

**Du, Y.; Deskins N. A.; Zhang Z.; Dohnálek Z.; Dupuis M.; Lyubinetsky I. Phys. Rev. Lett. 2009. 102, 096102–1–4.

Fujitani, Nakamura, Angew. Chem. Int. Ed. 50, 10144-10147, 2011.

Research Institute for Innovation in Sustainable Chemistry AIST The critical role of water at the gold-titania interface in catalytic CO oxidation 1.0 В Α $2CO + O_{2}$ 0.0 -1.0 *CO+CO+O, -2.0 1 OC--O--O (0.10) COO--H (0.76) Energy (eV) -3.0 H00*+*C0+C0 2ΔE CO2+0*+CO 2 -4.0 with add'I H2O OC--O(0.65) -5.0 **Extended** reaction zone *COOH+O*+CO *CO+O* CO2+OH*+CO -6.0 **Primary reaction zone** осо--н (0.76) (5) OC--OH(0.40) in add'TH2O CO2 -7.0 -path (i) -path (ii) *CO+HO* COOH* -8.0 **Reaction Coordinate** $H_2O \rightarrow H + OH$ (2) $O_2 + H \rightarrow HOO$ 3 $HOO + CO \rightarrow COOH + O$ 4 $COOH \rightarrow CO_2 + H$ 5 $O + H \rightarrow OH$ 6 $OH + CO \rightarrow COOH$ 7 $COOH \rightarrow CO_2 + H$

(8) $H + OH \rightarrow H_2O$

Saavedra, Doan, Pursell, Grabow, Chandler, Science, 345, 1599-1602, 2014.

AIST	高温(> 320 K)での活性点と反応機構 Pessearch Institute for Innovation in Sustainable Chemis				
Surface _	CO_2 formation rate (x10 ¹⁶ molecules/s)		TOF (molecules/site/s) ^{c)}		Ea (kJ/mol)
	300 K ^{a)}	400 K ^{b)}	300 K ^{c)}	400 K ^{d)}	> 350 K
Au(111)	> 0.05	6.7	0.0	48.2	5.2
Au(100)	> 0.05	6.4	0.0	52.5	4.5
TiO ₂ (110)	0.0	0.0	0.0	0.0	-
Au/TiO ₂ (110) ^{e)}	4.3	7.2	73.7	47.8	2.9

a) CO: 25Torr, O₂: 625Torr, H₂O: 0.1 Torr, b) CO: 25Torr, O₂: 625Torr, c) CO₂ formation / perimeter Au atoms, d) CO₂ formation / surface Au atoms e) Au: 1.3 nm, 1 ML

AIST PM-IRAS spectra over Au(111) at various temperatures in Sustainable Chemistry

1 Torr CO 25 Torr CO + 1.0 Torr O_2 250 K 250 K 300 K **300 K** 350 K 350 K Transmittance / % Transmittance / % 400 K 400 K 450 K 450 K 400 K 400 K 350 K 350 K 300 K **300 K** 250 K 250 K 2200 2100 2000 2000 1900 2200 2100 1900 Wavenumber / cm⁻¹ Wavenumber / cm-1

酸素が共存(反応雰囲気下)するとCO吸着ピークが消出

25 Torr CO at 450 K

 (1×1)

1 Torr O₂ at 450 K

(1×1)

 $(\sqrt{3} \times \sqrt{3}) R30^{\circ}$

25 Torr CO + 1.0 Torr O_2 at 450 K

 $(\sqrt{3} \times \sqrt{3}) R30^{\circ}$

320 K以上で(√3×√3)R30°が観察

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

Au+O2の構造

(√3×√3)R30°構造

> Au(111) + O_2 ($O_2 > 1$ bar, 1070 K)

Appl. Phys. Lett. 66, 935-937, 1995. Surf. Sci. 355, 1-12, 1996. Surf. Sci. 401, 469-475, 1998.

> Au(111) + \underline{CO} + O₂ (CO > 10 Torr, O₂ > 0.1 Torr, > 320 K)

XPS spectra for post-reaction Au(111) surface

After 25 Torr CO + 0.1 Torr O_2 exposure at various temperature

A: O₃ exposure surface, Θ_0 =1.1, B: After 25 Torr CO + 1 Torr O₂ exposure at 400 K

 O₃からの原子状酸素は, 580 K付近で脱離, CO + O₂からの酸素は脱離しない

 表面の酸素は, 原子状酸素ではなく, <u>Au酸化物の酸素</u>

- ➢ Au表面は、反応条件下でAu₂O₃表面を形成
- ➢ COの吸着でAu表面が再構成
- > Au₂O₃は表面近傍に存在
- ➢ 反応中, Au表面にはCO吸着が認められない

National Institute of Advanced Industrial Science and Technology AIST

ご清聴ありがとうございました