

# ESRによる高効率有機太陽電池の評価と素子特性向上

## 筑波大数物、筑波大学学際センター 丸本一弘

数理物質融合科学センター(CiRfSE)第1回ワークショップ、筑波大学、 つくば、2015年3月5日

# Outline

#### **1. Electron spin resonance (ESR)** New analytical method of organic solar cells

- 2. ESR study of organic solar cells Direct observation of charge accumulation during device operation 1) P3HT:PC<sub>61</sub>BM blend films Power conversion efficiency 3.5%
  - 2) PTB7:PC<sub>71</sub>BM blend films

High power conversion efficiency 8.5%

Light-induced ESR and performance of devices ⇒ analyze the internal states of solar cells Intrinsic deterioration mechanism

# 3. Summary

# Why ESR is useful for organic devices?

#### Traditional research methods for organic devices

- Electrical measurements (current, voltage,...)
- Scanning microscopes (AFM, STM,...), etc.
- cannot directly observe internal states in organic devices.

  - Understanding of device operation Improvement of device performance

#### **Advantages of ESR for organic devices:**

- In situ direct observation of internal states in organic devices
- High sensitive and high precision analysis at molecular level  $\sim 10^{10}$  spins are enough for ESR measurement
- Quantitative measurements of charges with spins in devices

First ESR application to organic devices was reported in 2004 J. Phys. Soc. Jpn. 73 (2004) 1673.

# **Principal of ESR and system**

#### High sensitive and precision analytical method Evaluation of organic devices at the molecular level

#### **Principle of ESR**

Electron energy in magnetic field *H* Spin Hamiltonian:

 $\mathcal{H} = \mu_{\mathsf{B}} \boldsymbol{H} \cdot \boldsymbol{g} \cdot \boldsymbol{S} = g \mu_{\mathsf{B}} H m_{s} \quad (m_{s} = \pm 1/2)$ 



#### ESR system



Microwave resonant absorption in magnetic field for charges with magnetic moment, spin *S* 

Resonant magnetic field: *g* value A unique value for material

# **Organic solar cells**

#### **Features**

- Advantages: low cost, flexible, light weight
- Disadvantages: low efficiency and durability Recently, ~12% efficiency has been reported



Sumitomo Chemical

#### **Problems for practical application**

- Further improvement of performance: more than 15%
- Elucidation of degradation mechanisms

#### **Deterioration mechanism due to an intrinsic problem,**

not due to extrinsic problems such as  $\rm O_2$  and  $\rm H_2O$ 

• Charge accumulation in devices is reported for polymer solar cells

Charge accumulation deteriorate device performance

## **Deterioration and recovery of performance**

P3HT:PCBM solar-cell performance is deteriorated by irradiation and recovered by thermal annealing under  $N_2$  condition



T. Yamanari et al., *2010 35<sup>th</sup> PVSC IEEE*, (2010) 001628.

Reversible

- No IPCE change
  No molecular degradation
- Intrinsic problem, not extrinsic problems



- Extrinsic problems can be solved by device sealing.
- However, the sealing cannot solve intrinsic problem.

### Which molecules charges accumulate? Where?

# **Charge accumulation in organic solar cells**



For ideal solar cell, no charge accumulation occurs One photon creates hole and electron, which are collected by electrodes.

However, in actual solar cells, what happens? ...Charges accumulate.

#### **Microscopic analysis of organic solar cells**

by detecting charge accumulation during device operation The sites can be clarified by unique *g* values for materials

## What happens from charge accumulation?



## **Device structure of P3HT:PCBM cells for ESR**



# **Light-induced ESR system**



Simultaneous measurements of ESR and device performance at RT

# ESR signals of ITO/P3HT:PCBM

#### ITO/P3HT:PCBM



Light-induced ESR (LESR): difference between signals under irradiation and dark condition

|         | P3HT     | PCBM     |
|---------|----------|----------|
|         | radical  | radical  |
|         | cation   | anion    |
| g-value | 2.00152- | 1.99845- |
| -       | 2.00310  | 2.00058  |

O. G. Poluektov et al., *J. Phys. Chem B* **114** (2010) 14426.

| Hole accumulation in P3HT  |
|----------------------------|
| in the film by irradiation |

Hole = Radical cation = Positive polaron

Absence of PCBM signal is due to the signal broadening from fast spin-relaxation time at RT

#### **Transient response of hole accumulation**



# **LESR signals under short-circuit conditions**

#### ESR signals under solar irradi.

#### Increase in LESR signals



# Hole accumulation and device performance



Adv. Mater. 25 (2013) 2362.

**Intrinsic deterioration mechanism** 

## Accumulation sites for fast and slow components



# Mechanism of the decrease in $V_{oc}$



# Mechanism of the decrease in $J_{sc}$



## Summary

ESR studies of internal states in organic thin-film solar cells

# Charge accumulation during device operation

- P3HT:PC<sub>61</sub>BM polymer solar cells
- High efficiency PTB7:PC<sub>71</sub>BM cells
  Intrinsic deterioration mechanism

ESR analysis:

useful knowledge for

understanding of device operation and

improvement of device performance

at the microscopic level

## Acknowledgements

#### **Collaborators:**

T. Fujimori, M. Ito, T. Nagamori, M. Yabusaki, D. Liu, T. Kubodera (U. Tsukuba)

Prof. T. Mori (Aichi I. T.), Dr. T. Yamanari, Dr. Y. Yoshida (AIST) Dr. T. Yasuda, Dr. L. Han (NIMS)

#### Funds:

JST, PRESTO; JSPS; Univ. of Tsukuba; TIMS, U. Tsukuba

