

Selected Highlights from Higgs Results at the LHC-ATLAS Experiment

Tsukuba CiRfSE Workshop, March 13, 2015

Hideki Okawa University of Tsukuba, Division of Physics & CiRfSE

CERN & LHC

- Large Hadron Collider (LHC) is a pp-collider located at CERN in Geneva, Switzerland.
- Only operating collider at the energy frontier.
- Four interaction points at the LHC, where two are for generic purpose detectors (ATLAS & CMS), and the others for b-physics (LHCb) & heavy ion (ALICE).

AT LAS

ATLAS Experiment

- Calorimeter: high granularity & hermeticity.
- Muon spectrometer: surrounded by aircore toroidal magnets.
- 3-level trigger system (L1, L2, EF)

- Generic detector located ~100m underground.
- Inner Detector: Surrounded by 2T solenoid. Gigantic silicon detector + TRT.

- A Higgs boson was discovered at LHC in July 2012.
- Phys. Lett. B 716 (2012) 1
- Last missing piece of Standard Model (SM) or does it also imply BSM?

Hideki Okawa

Standard Model@LHC

nn	$\sigma = 95.35 \pm 0.38 \pm 1.3$ hackb (data)	······································		ן מזן	ard
total	COMPETE RRpl2u 2002 (theory)		° °	8×10-8	ATLAS-CONF-2014-
Jets R=0.4 y <3.0	$\sigma = 563.9 \pm 1.5 + 55.4 - 51.4 \text{ nb (data)} \\ \text{NLOJet++, CT10 (theory)}$	0.1 < p _T < 2 TeV	•	4.5	ATLAS-STDM-2013
Dijets R=0.4 y <3.0, y*<3.0	$\sigma = 86.87 \pm 0.26 + 7.56 - 7.2 \text{ nb (data)} \\ \text{NLOJet++, CT10 (theory)}$	0.3 < m _{jj} < 5 TeV	•	4.5	JHEP 05, 059 (2014
W total	$\sigma = 94.51 \pm 0.194 \pm 3.726$ nb (data) FEWZ+HERA1.5 NNLO (theory)	4	•	0.035	PRD 85, 072004 (20
Z total	$\sigma = 27.94 \pm 0.178 \pm 1.096$ nb (data) FEWZ+HERA1.5 NNLO (theory)	4	4	0.035	PRD 85, 072004 (20
+ T	$ \sigma = 182.9 \pm 3.1 \pm 6.4 \text{ pb (data)} \\ \text{top++ NNLO+NNLL (theory)} $	¢	Þ	4.6	arXiv:1406.5375 [he
total	$\sigma = 242.4 \pm 1.7 \pm 10.2 \text{ pb (data)} \\ \text{top++ NNLO+NNLL (theory)}$	4	Δ.	20.3	arXiv:1406.5375 [he
t _{t-chan}	$ \sigma = 68.0 \pm 2.0 \pm 8.0 \mathrm{pb} (\mathrm{data}) \\ \mathrm{NLO+NLL} (\mathrm{theory}) $	\$		4.6	arXiv:1406.7844 [he
total	$\sigma = 82.6 \pm 1.2 \pm 12.0 \text{ pb (data)}$ NLO+NLL (theory)	4		20.3	ATLAS-CONF-2014
	$\sigma = 72.0 \pm 9.0 \pm 19.8 \ {\rm pb}$ (data) MCFM (theory)	ATLAS Preliminary		4.7	ATLAS-CONF-2012
\\/\\/	$\sigma = 51.9 \pm 2.0 \pm 4.4 \mathrm{pb} \mathrm{(data)}$ MCFM (theory)	$\stackrel{\circ}{\sim}$ Dup 1 \sqrt{c} = 7.8 TeV		4.6	PRD 87, 112001 (20
total	$\sigma = 71.4 \pm 1.2 + 5.5 - 4.9 \text{ pb (data)}$ MCFM (theory)	\downarrow Rull 1 $\sqrt{3} = 7,0$ le		20.3	ATLAS-CONF-2014
HggF	$ \sigma = 19.0 + 6.2 - 6.0 + 2.6 - 1.9 \ {\rm pb} \ {\rm (data)} \\ {\rm LHC-HXSWG} \ {\rm (theory)} $			4.8	ATL-PHYS-PUB-20
total	$\sigma = 25.4 + 3.6 - 3.5 + 2.9 - 2.3 \text{ pb} (data)$ LHC-HXSWG (theory)	LHC pp \sqrt{s} = 7 TeV		20.3	ATL-PHYS-PUB-20
Wt	$\sigma = 16.8 \pm 2.9 \pm 3.9 \text{ pb} (\text{data})$ NLO+NLL (theory)			2.0	PLB 716, 142-159 (
total	$\sigma = 21.2 \pm 2.8 \pm 5.4 \text{ pb (data)}$ NLO+NLL (theory)			20.3	ATLAS-CONF-2013
WZ	$\sigma = 19.0 + 1.4 - 1.3 \pm 1.0 \text{ pb} (\text{data})$ MCFM (theory) = -20.3 + 0.8 - 0.7 + 1.4 - 1.3 pb (data)	Data stat		4.6	EPJC 72, 2173 (201
total	MCFM (theory) $mc = 6.7 \pm 0.7 \pm 0.5 \pm 0.4$ pb (data)	Stat+syst	4	13.0	ATLAS-CONF-2013
ZZ	MCFM (theory) $\sigma = 7.1 + 0.5 - 0.4 + 0.4 \text{ pb (data)}$	V		4.6	JHEP 03, 128 (2013
total	MCFM (theory)	$\frac{4}{1-1}$ LHC pp $\sqrt{s} = 8$ TeV $-$	4	20.3	AILAS-CONF-2013
H vBF total	$\sigma = 2.6 \pm 0.6 + 0.5 - 0.4 \text{ pb (data)}$ LHC-HXSWG (theory)	▲ Theory	▲	20.3	ATL-PHYS-PUB-20
ttw total	$\sigma = 300.0 + 120.0 - 100.0 + 70.0 - 40.0$ fb (data) MCFM (theory)	△ Data stat		20.3	ATLAS-CONF-2014
tt Z	$\sigma = 150.0 + 55.0 - 50.0 \pm 21.0 \text{ fb (data)}$ HELAC-NLO (theory)			20.3	ATLAS-CONF-2014

After Higgs Discovery

Events / 0.1

2000

1500

1000

Data] J^P = 0⁺] Background

- Is it really the Standard Model Higgs boson?
 - Results are consistent with scalar.
 - Signal strengths for main channels are consistent w/ Standard Model.
- $H \rightarrow \tau^+ \tau^-$ is also observed. What about $H \rightarrow b\overline{b}$?
- Any exotic decays? Does the Higgs boson just decay as expected from the Standard Model? (γγ, ZZ, W+W⁻, τ+τ⁻, bb,...)
 - <u>Constraint on the Higgs boson width</u>
 - Invisible decays of Higgs
- Are there more Higgs bosons?

Phys. Lett. B 726 (2013) 120

H→bb̄ Measurement

<u>JHEP01(2015)069</u>

- $H \rightarrow b\overline{b}$ has the largest BR (58%) among all the decay channels.
- Need to look at the VH production, since ggF and VBF suffer from large multijet background.
- Current results from other experiments: Tevatron 2.8 σ , CMS 2.1 σ .

VH(→bb̄)

- 3 channels to be considered regarding the lepton multiplicity (0, 1, 2leptons for ZH→vvbb, WH→lvbb, ZH→l+l-bb).
- Both cut-based & multivariate (BDT) analyses considered.
- Require 1 or 2 b-tagged jet(s). Categorize with p_T^V ranges.

VH(→bb̄)

- Main backgrounds: Z+jets, W+jets, tt, diboson, multijet.
- Backgrounds are estimated with data-driven methods or simulation with corrections derived from data (e.g. Δφ(j,j) reweighting for W +jets).

VH(→bb̄)

- Measurement is still consistent with the Standard Model, but H→bb is not observed yet.
- Overall signal strength is $0.51\pm0.31\pm0.24$ for m_H=125 GeV. Observed significance of 1.4 σ .

Hideki Okawa

Higgs Width

arXiv:1503.01060

Tsukuba CiRfSE Workshop, March 12-13, 2015

Higgs Total Width

- **We cannot directly measure the width of the Higgs boson** (Γ_H =4.1 MeV) due to the detector resolution.
 - Mass resolution@ATLAS is ~2 GeV.
- Current Higgs measurement does not provide constraints on the width.

→ If the width & couplings scale at the same time, the signal yields stay the same.

$$\sigma_{i \to H \to f} \sim \frac{\kappa_i^2 \kappa}{\Gamma_H}$$

- $\sigma_{i \rightarrow H \rightarrow f}$: Cross section of Higgs production i, decay pattern f
- κ_i: Higgs coupling to particle i
- κ_f : Higgs coupling to particle f
- Γ_H: Total Higgs width

Larger total width is a sign of BSM decays.

13

arXiv:1503.01060

- Off-shell production of the Higgs boson shows up in the tail of the m₄ distribution & its yield greatly enhances with the Higgs total width!
- $H \rightarrow ZZ \& W^+W^-$ are promising decay channels for this measurement.

$H^* \rightarrow ZZ \rightarrow 4I$

- Same strategies as the coupling measurement with the $H \rightarrow ZZ^* \rightarrow 4I$.
- $50 < m_{12} < 106 \text{ GeV}, 50 < m_{34} < 115 \text{ GeV}, 220 < m_{41} < 1000 \text{ GeV}.$
- Exploits the Matrix Element using 8 kinematic variables (m_{41} , m_{12} , m_{34} , cos θ_1 , cos θ_2 , ϕ , cos θ^* , ϕ_1) to discriminate gluon-gluon initiated signals.

Hideki Okawa

 $H^* \rightarrow ZZ \rightarrow I^+ I^- v\bar{v}$

- Cut-based analysis with the Z+Missing
 E_T final state.
- Basically the same strategies (e.g. BG estimation methods) as the previously published ZH invisible search (Phys. Rev. Lett. 112, 201802 (2014)), but the event selection is optimized for the off-shell signals.
 - e.g. **E**_T^{miss} > 180 GeV, m_T^{ZZ}> 380 GeV.
- m_T^{ZZ} is used as the final discriminant.

$$m_{\rm T}^{ZZ} \equiv \sqrt{\left(\sqrt{m_Z^2 + \left|\boldsymbol{p}_{\rm T}^{\ell\ell}\right|^2} + \sqrt{m_Z^2 + \left|\boldsymbol{E}_{\rm T}^{\rm miss}\right|^2}\right)^2 - \left|\boldsymbol{p}_{\rm T}^{\ell\ell} + \boldsymbol{E}_{\rm T}^{\rm miss}\right|^2}$$

 $H^* \rightarrow W^{\pm}W^{\mp} \rightarrow e^{\pm}v\mu^{\mp}v$

17

- Cut-based analysis using $e^{\pm}\mu^{\mp}$ final state.
- Baseline strategies are the same as the SM $H \rightarrow WW^*$ measurement, but no jet binning is performed.
- **R**₈ is used as the final discriminant.

$$m_{\mathrm{T}}^{WW} = \sqrt{\left(E_{\mathrm{T}}^{\ell\ell} + p_{\mathrm{T}}^{\nu\nu}\right)^{2} - \left|\boldsymbol{p}_{\mathrm{T}}^{\ell\ell} + \boldsymbol{p}_{\mathrm{T}}^{\nu\nu}\right|^{2}},$$
$$R_{8} = \sqrt{m_{\ell\ell}^{2} + \left(a \cdot m_{\mathrm{T}}^{WW}\right)^{2}}.$$

- $a = 0.8 \& R_8 > 450 GeV$ were adopted from optimization.
- Dominant BGs: Top quark & $qq \rightarrow WW$ events.

Combined Results

 $WW \rightarrow e\nu \,\mu\nu$

 1.5 ± 0.4

40r

N N N N

• Good agreement with Standard Model prediction.

 $ZZ \to 4\ell$

 1.1 ± 0.3

 $ZZ \rightarrow 2\ell \, 2\nu$

 3.2 ± 1.0

• Stringent constraint on the off-shell signal strength & total Higgs width.

Tsukuba CiRfSE Workshop, March 12-13, 2015

- Γ_H/Γ_HSM < 4.5-7.5 (obs), 6.5-11.2 (exp) @95% CL.
- However, still allows for sizable contributions from BSM.

Process

 $gg \to H^* \to VV$ (S)

BSM Decays of Higgs

ZH→I+I-+invisible

BSM decay of Higgs boson to dark matter. Expected from Supersymmetry, etc.

• e^+e^- or $\mu^+\mu^-$ w/ 76 < M_{II} < 106 GeV; 3rd lepton veto (p_T >7 GeV)

ZH→I+I-+invisible

- Limit on BR(H→invisible)<0.75 (observed) & 0.62 (expected) @ 95% confidence level. assuming $m_H = 125.5 \text{ GeV} \& \sigma_{ZH} = \sigma_{ZH}^{SM}$.
- The BR(H→inv) limit was interpreted within Higgs-portal dark matter model. <u>The ATLAS result shows outstanding sensitivity in the low DM</u> <u>mass region, exceeding current DM detection experiments</u>.

Heavy Higgs Boson Searches

Heavy Higgs Bosons

- Many BSM models predict the existence of multiple Higgs bosons.
- Their decay modes & branching ratios highly depend on mass & tan β (vacuum expectation values of the Higgs bosons).

$H \rightarrow hh \rightarrow b\bar{b}\gamma\gamma$ (low tan β)

Phys. Rev. Lett. 114, 081802 (2015)

- Small BR (~0.003), but very clean signature.
- Two γ 's following the SM h $\rightarrow \gamma \gamma$ analysis. 2 b-jets (w/ p_T > 55/35 GeV), 95 < m_{bb} < 135 GeV & 105 < m_{\gamma\gamma} < 160 GeV. Events from diphoton trigger.
- 1.5 events expected from the SM, 5 events observed (2.4σ excess).
- H→hh→bbbb also published. H→hh→bbτ+τ- & bbW+W- under way.

Hideki Okawa

- Width effects are ignored in the signals, but its impact on the limits are checked.
- $230 < m_A < 350$ GeV are excluded for low tan β cases.

m_A [GeV]

h/A/H \rightarrow **T**⁺**T**⁻ (high tan β)

- 08 08 08 Events / 20 GeV **ATLAS**, √s = 8 TeV, **(**L dt = 20.3 fb⁻ L dt = 19.5 - 20.3 fb⁻¹ ATLAS √s=8 TeV, 700 70 h/H/A→τ_{ler} h/H/AData 2012 MSSM m_h^{mod+} scenario, $M_{SUSY} = 1 \text{ TeV}, h/H/A \rightarrow \tau \tau$ m₄=150, tanβ=20 tag category 600 7→ττ 60 Z→ee/µµ Obs 95% CL limit tt & single top ---- Exp 95% CL limit 500 W+jets & diboson **50** 2 0 Multijet Obs 95% CL limit \\\\\\ Bkg. uncertainty \pm 1 σ_{theory} 400 40 لاووو 300 exclude **30** 200 20 h/H/A100 10 ╶┎╶╗╴┰╶┟╶┓╴┰╼┎╶┓╴╣╸┰╼┎╺┑╸┱╼┠╺┱╸┓╸┰╼┎╺╬╴┱╾┎╼╔ 200 300 100 200 300 400 500 600 700 800 900 1000 50 100 150 250 350 0 m^{MMC} [GeV] m_A [GeV]
- No b-tag & b-tagged signal regions to search for ggF & b-associated production. Uses all combinations of tau decays (τ_{lep} - τ_{lep} , τ_{lep} - τ_{had} , τ_{had} - τ_{had})
- $m_{\tau\tau}$ is calculated using the missing mass calculator (MMC). Does not assume collinear approximation & estimate neutrino momentum using a set of equations & likelihood computation.

JHEP11(2014)056

Summary

- Presented selected highlights on the Higgs results from the LHC-ATLAS Experiement.
- After the discovery of the Higgs boson, we are progressing with promising programs to understand the Higgs sector from various perspective.
- The efforts will continue for Run-2.
- Run-2 is about to start!
 - 6.5 TeV training is ongoing & has already been successful in many sectors.
 - First beam expected in late March; test collisions expected in late May; 13 TeV data taking will likely to occur in June (50 ns & then to 25 ns).

backups

VH(→bb)

Local p_0

10

inner.

10⁻¹

10⁻²

10⁻³

10⁻⁴

110

115

ATLAS

hh→bbbb

$h/A/H \rightarrow T^+T^-$ (high tan β)

JHEP11(2014)056

$h/A/H \rightarrow T^+T^-$ (high tan β)

JHEP11(2014)056

