ペロブスカイト型の電荷ダイナミクス

沈青

電気通信大学大学院理工学研究科 先進理工学専攻

Organic-Inorganic Hybrid Solar Cells

Schematic illustration of structure of an organic-inorganic hybrid solar cell (OIHSC)

Absorber

(dye, quantum dots (QDs), perovskite)

Efficiency of OIHSCs with different absorbers:

Dye: 1% (1998)¹⁾ \rightarrow 7.2% (2011)²⁾ Improvements in absorption of dye and conductivity of HTM

Quantum dots (QDs): 5% (2010)³⁾ \rightarrow 6.3% (2012)⁴⁾

 $\mathsf{Sb}_2\mathsf{S}_3$ and improvement in HTM

Perovskite lead iodide: $9.7\%(2012)^{5} \rightarrow 20.1\%(2014)^{6}$

M. Gratzel et al., Nature 1998, 395, 583–585.
M. Gratzel et al., J. Am. Chem. Soc. 2011, 133, 18042–18045.
S. I. Seok et al., Nano Lett. 2010, 10, 2609–2612.

4) S. I. Seok et al., Nano Lett. 2012, 12, 1863–1867.

- 5) N. G. Park et al., Sci. Rep. 2012, 2, 591.
- 6) <u>http://www.nrel.gov/ncpv/</u>

Organic-Inorganic Hybrid Solar Cells

Efficiency of OIHSCs with different absorbers:

Dye: 1% (1998)¹⁾ \rightarrow 7.2% (2011)²⁾ Improvements in absorption of dye and conductivity of HTM

Quantum dots (QDs): 5% (2010)³⁾ \rightarrow 6.3% (2012)⁴⁾

Sb₂S₃ and improvement in HTM

Perovskite lead iodide: $9.7\%(2012)^{5} \rightarrow 20.1\%(2014)^{6}$

Schematic illustration of structure of an organic-inorganic hybrid solar cell (OIHSC)

Absorber

(dye, quantum dots (QDs), perovskite)

Why the efficiency of perovskite-based OIHSCs can be so high?

Unique properties of Pb perovskite for solid state solar cells

(1) high optical absorption coefficient N719: $\alpha = 1500 \text{ cm}^{-1} \text{ at } 540 \text{ nm}$; CH₃NH₃Pbl₃: $\alpha = 15000 \text{ cm}^{-1} \text{ at } 550 \text{ nm}$

(2) long electron and hole diffusion length in the perovskite CH₃NH₃PbI₃: 100 nm; CH₃NH₃PbI_{3-x}Cl_x: > 1000 nm

S. D. Stranks et al., Sicence 342, 341 (2013); G. C. Xing et al., Science 342, 344 (2013). Ionger lifetimes of photoexcited carriers in Pb perovskie

Unique properties of Pb perovskite for solid state solar cells

(1) high optical absorption coefficient N719: $\alpha = 1500 \text{ cm}^{-1}$ at 540 nm; CH₃NH₃Pbl₃: $\alpha = 15000 \text{ cm}^{-1}$ at 550 nm

(2) long electron and hole diffusion length in the perovskite CH₃NH₃PbI₃: 100 nm; CH₃NH₃PbI_{3-x}Cl_x: > 1000 nm

S. D. Stranks et al., Sicence 342, 341 (2013); G. C. Xing et al., Science 342, 344 (2013). Ionger lifetimes of photoexcited carriers in Pb perovskie

Some open questions for perovskite-based solar cells

- 1. What is the time scale of charge separation and recombination and which interface do they occur?
- 2. How about charge separation and charge collection efficiency?
- 3. How about surface engineering (surface passivation) influence charge separation and collection efficiency?

Our studies on Charge Separation and Recombination in Perovskite Solar cells

\$\\$ surface passivation of TiO_2 surface with Y_2O_3 ChemPhysChem, Vol. 15, 1062 (2014).
\$\\$ Dependence on TiO_2 morphology Phys. Chem. Chem. Phys., Vol. 16, 19984 (2014).

(2) TiO₂/CH₃NH₃Pbl₃/Spiro-OmeTAD (two step)

(3) $TiO_2/CH_3NH_3Sn_xPb_{1-x}I_3/Spiro-OmeTAD$ (one step)

Carrier dynamics depends greatly on the ratio x of Sn and Pb Submitted for publication

Charge Separation and Recombination in OIHSC One Key for Improving the Efficiency

The charge separation and recombination dynamics from sub-picoseconds to milliseconds can be detected with a <u>transient absorption (TA) method</u>.

Recombination in CH₃NH₃Pbl_xCl_{3-x} on Y₂O₃

Charge separation at CH₃NH₃Pbl_xCl_{3-x} /Spiro-OMeTAD interface

charge recombination at CH₃NH₃Pbl_xCl_{3-x} /Spiro-OMeTAD interface

Charge separation and recombination at CH₃NH₃Pbl_xCl_{3-x} /Spiro-OMeTAD interface on Y₂O₃

Charge separation at CH₃NH₃Pbl_xCl_{3-x}/TiO₂ interface

There is electron injection from $CH_3NH_3PbI_xCI_{3-x}$ to TiO_2 .

ChemPhysChem, Vol. 15, 1062 (2014).

Charge separation at CH₃NH₃Pbl_xCl_{3-x}/TiO₂ interface

Electron injection efficiency \mathbf{n}_{ET}

Phys. Chem. Chem. Phys., Vol. 16, 19984 (2014).

 $\eta_{ET} = (1/\tau_{ei})/(1/\tau_{ei}+1/\tau_{1})$

η_{ετ}: close to 100%

Charge recombination at CH₃NH₃Pbl_xCl_{3-x}/TiO₂ interface

Probe light wavelength: 658 nm \implies Monitor electrons in TiO₂

T. Yoshihara et al., *The Journal of Physical Chemistry B*, 2004, **108**, 3817-3823. *Physical Chemistry Chemical Physics*, 2014, **16**, 5242; 2013, **15**, 11006; 2014, **16**, 5774.

Charge recombination at CH₃NH₃Pbl_xCl_{3-x}/TiO₂ interface

Probe light wavelength: 658 nm \implies Monitor electrons in TiO₂

Charge separation efficiency: $\eta_{CS} = \eta_{ET} \eta_{HT} \approx 90\%$

Charge recombination at TiO₂/Spiro-OMeTAD interface

Charge recombination at TiO₂/Spiro-OMeTAD interface

Relationship between Carrier Dynamics and Photovoltaic Performance

Effects of surface treatment on carrier dynamics and photovoltaic performance

Effects of TiO₂ nanoparticle sizes on carrier dynamics and Photovoltaic Performance

Summary

(1) The carrier lifetime of perovskite $CH_3NH_3PbI_xCI_{3-x}$ is as large as μs .

(2) Charge separation efficiency is as high as 90% for $TiO_2/CH_3NH_3Pbl_xCl_{3-x}/Spiro$ OMeTAD.

(3) The key factor for improving the efficiency is to decrease the recombination at $TiO_2/Spiro$ OMeTAD interface, which resulted in a smaller charge collection efficiency.

How to suppress the recombination is a key and surface passivation of TiO_2 and interface engineering are important.

This research was supported by the CREST program of Japan Science and Technology Agency (JST).

九州工業大学:早瀬修二先生、尾込裕平先生 宮崎大学:吉野賢二先生 電通大:豊田太郎先生