

2015年3月12日 CiRfSE第1回ワークショップ(筑波大学)

1. 研究背景

2. トリフェニルアミン系アモルファス高分子 (久留米高専 石井努准教授との共同研究)

3. CH直接重合法で合成したアモルファス高分子

4. まとめ

研究背景 BHJ有機薄膜太陽電池特性のバラつき

混合状態(相分離状態)が悪ければ、特性は低い。 特に結晶性高分子とPCBMの混合状態の制御は難しい。

P3HTとPCBMの変換効率

混合(BHJ)状態と太陽電池特性

T. Yasuda, et al, Org. Electron. 13 (2012) 1802

近年の狭バンドギャップ高分子においても

ITO/PEDOT:PSS/PTB7:PC₇₀BM (2:3) (約100nm)/LiF(1nm)/Al(80nm)

アモルファス材料の利点を再考

利点 均質でピンホールの無い薄膜を形成する → 特性のばらつきが少ない

実用化されている有機ELの薄膜はアモルファス薄膜を使用

良質なアモルファス薄膜を形成し、正孔輸送能力を有することが 知られているトリフェニルアミン系材料に着目

同一構造で低分子と高分子を比較

Active layer	Blend ratio	Jsc (mAcm ⁻²)	Voc (V)	FF	PCE (%)
BTD-TPA: PC ₆₀ BM	1:2	1.53	0.87	0.32	0.43
poly(BTD-TPA): PC ₆₀ BM	1:2	2.64	0.93	0.36	0.88

アクセプターにPC70BMを使用

Active layer	Blend ratio	Jsc (mAcm ⁻²)	Voc (V)	FF	PCE (%)
poly(BTD-TPA): PC ₆₀ BM	1:4	3.96	0.90	0.38	1.34
poly(BTD-TPA): PC ₇₀ BM	1:4	7.45	0.92	0.39	2.65

TPA系材料の利点

結晶性P3HTは太陽電池特性が薄膜作製条件(溶媒、熱処理温度)に大きく依存するが、poly(BTD-TPA)は作製条件に依存しない。

様々な作製プロセスに対応可能

T. Yasuda, Y. Shinohara, T. Ishi-i and L. Han, Org. Electron. 13 (2012) 1802

TPA系材料の欠点

アモルファス薄膜は相分離が起こり難く、キャリアの再結合が起こりFFが低下する。

TPAポリマーを様々開発

いずれもPCE 2-3%程度、FF 0.40以下

T. Yasuda, Y. Shinohara, Y. Kusagaki, T. Matsuda, L. Han, T. Ishi-I, J. Polym. Sci.: Polym. Chem. A **51**(2013) 2536, Polymer **58** (2015) 139 N. Takase, J. Kuwabara, S. J. Choi, T. Yasuda, L. Han, T. Kanbara, J. Polym. Sci.: Polym. Chem. A **53** (2015) 536

1. 研究背景

2. トリフェニルアミン系アモルファス高分子

3. CH直接重合法で合成したアモルファス高分子 (筑波大学 神原貴樹教授、桑原純平講師との共同研究)

4. まとめ

CH直接重合による高分子(PEDOTF)の合成

CH直接重合により高重合度の高分子合成に成功

各種PEDOTF純度の比較

精製はいずれも1回の再沈殿のみ

	元素分析 / %			ICP-AES / ppm		
	С	Н	Br	Pd	Р	
計算値	79.50	8.39	0.00			
H-PEDOTF	79.45	8.34	0.00	1590	Not detected	
L-PEDOTF	78.52	8.01	0.34	2300	Not detected	
S-PEDOTF	77.48	8.42	0.08	4390	470	

H-PEDOTFは最も高い純度を有する

CH重合により低コストでの高分子開発が可能

T. P. Osedach et al, *Energy Environ. Sci.* 6 (2013) 711

高純度・高分子量化による移動度の向上

トランジスタ測定による移動度評価 ガラス基板/Auゲート電極/パリレンC絶縁膜/有機半導体/ソースドレインAu電極

Polymer	正孔移動度 (cm²/Vs)	しきい値 電圧(V)	On/off 比
S-PEDOTF	3.1 x 10⁻⁵	-27	5.6 x 10 ²
L-PEDOTF	8.5 x 10 ⁻⁴	-19	1.4 x 10 ⁴
H-PEDOTF	1.1 x 10 ⁻³	-18	3.4 x 10 ⁴

高純度・高分子量化によるOPV特性の向上

同じ構造であるにも関わらず、デバイス特性が大きく変化

J. Kuwabara, T. Yasuda, S. J. Choi, W. Lu, K. Yamazaki, S. Kagaya, L. Han, T. Kanbara, *Adv. Funct. Mater.* **24** (2014) 3226

膜質 AFMによる表面観察

Polymer単層

S-PEDOTF

L-PEDOTF

H-PEDOTF

1.53

いずれもアモルファス薄膜に見られる凹凸の少ない表面形状

有機ELによるVoc評価

T. Yasuda, J. Kuwabara, L. Han, T. Kanbara, (in press)

高純度・高分子量化によるOPV寿命の向上

疑似太陽光AM 1.5連続照射下におけるデバイス寿命(26°C、窒素雰囲気) 初期PCE: 4.26%(H-PEDOTF) and 0.53%(S-PEDOTF)

高純度・高分子量のH-PEDOTFの方が長寿命

アモルファスPEDOTFの利点

2段階のCH直接重合による狭バンドギャップ D-Aポリマーの開発

Y. Nohara, J. Kuwabara, T. Yasuda, L. Han, and T. Kanbara, J. Polym. Sci. A: Polym. Chem. 52 (2014) 2013

PEDOTNDIFのエネルギー準位と物性

狭バンドギャップ化に成功。 電子移動度1.0×10⁻⁵>正孔移動度5.3×10⁻⁷ cm²V⁻¹s⁻¹

まとめ

数種類のアモルファス高分子を開発

- ・高純度、高重合化で、BHJ OPV特性が向上
- ・アモルファス高分子のBHJ OPV応用への利点を確認

✔ デバイス特性が作製条件に依存しない

材料開発

- ・久留米高専 石井 努 准教授:TPA系ポリマーの合成
- ・筑波大学 神原貴樹教授、桑原純平講師:CH重合による高分子の合成

共同研究して頂いている筑波大学の先生方 2013年以降の論文25報の 内13報が筑波大学との共同研究(全て太陽電池関係)

つくば地区

- ・デバイス用材料合成・開発
- ・デバイス作製・評価
- ・デバイス物理・物性

のバランス良い連携