ATLAS 実験の概要

佐藤 構二 2016年1月19日 CiRfES Workshop

- ・ 最高エネルギーでの、さまざまな素粒子反応の研究
 - ヒッグス粒子、標準理論、トップクォーク、Bメソン、超対称性、新物理探索、重イ オン衝突…

ATLAS実験

CMS検出器

・ LHCのもうひとつの高エネルギー素粒子実験

ヒッグス粒子発見

2012年7月4日 LHC加速器の ATLAS/CMS両実験が発見を報告 2013年 アングラール、ヒッグス がノーベル物理学賞を受賞

ヒッグス粒子の性質(標準理論の計算)

生成断面積 • [qd] Ω + NLO EN 102 10 H (NLO QCD) 10 M_H = 125 GeV **MSTW2008** 10 50 60 70 80 10² √s [TeV] 7 8 9 10 20 30 40

	σ(14TeV)/σ(8TeV)
gg→H	2.6 (Mx=MH)
qq→qqH	2.6 (probes high M _X)
qq→VH	2.1 (M _X =M _V +M _H)
gg→ttH	4.7 (phase space+Mx)

Figure 2: Leading-order Feynman diagrams of Higgs boson production via the (a) $q\bar{q} \rightarrow VH$ and (b,c) $gg \rightarrow ZH$

Figure 3: Leading-order Feynman diagrams of Higgs boson production via the $q\bar{q}/gg \rightarrow t\bar{t}H$ and $q\bar{q}/gg \rightarrow bbH$

7

ヒッグス粒子の性質(標準理論の計算)

さまざまな生成・崩壊モード

- さまざまな測定を行い、標準 理論を検証できる。
- 重心エネルギー8 TeV⇒13 TeV
- ・ 生成断面積は、2-5倍。

Run2では、たくさん作って 様々なチャンネルで精密測定 する。

9

Figure 5: Leading-order Feynman diagrams of Higgs boson decays (a) to W and Z bosons and (b) to fermions.

Figure 6: Leading-order Feynman diagrams of Higgs boson decays to a pair of photons.

• 崩壊分岐比 (m_H= 125 GeV)

$H ightarrow b\overline{b}$	$H ightarrow au^{-}$	$H ightarrow au^+ au^-$		$H ightarrow \mu^+ \mu^-$		$H \rightarrow c \overline{c}$	
57.7%	6.32	6.32% 0.022% 0		0.029%			
H ightarrow gg	$H o \gamma \gamma$	$H \rightarrow$	γ Zγ	$H \to W$	W	$H \rightarrow ZZ$	Γ _H [MeV]
8.6%	0.23%	0.23% 0.2		5% 21.5%		2.64%	4.07

_____Run1での信号の有意度

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Signal significance $[\sigma]$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c ccccc} H \to \gamma\gamma & [51] & [52] & 1.15^{+0.27}_{-0.25} & 1.12^{+0.23}_{-0.23} & 5.0 & 5.6 \\ & & & & & & \\ & & & & & & \\ & & & & $	5		
$\begin{array}{c ccccc} & (\stackrel{+0.26}{-0.24}) & (\stackrel{+0.24}{-0.22}) & (4.6) & (5.1) \\ \hline H \to ZZ \to 4\ell & [53] & [54] & 1.51\stackrel{+0.39}{-0.34} & 1.05\stackrel{+0.32}{-0.27} & 6.6 & 7.0 \\ (\stackrel{+0.33}{-0.34}) & (\stackrel{+0.31}{-0.34}) & (55) & (6.8) \\ \hline \end{array}$			
$H \to ZZ \to 4\ell [53] [54] 1.51^{+0.39}_{-0.34} 1.05^{+0.32}_{-0.27} 6.6 7.0$)		
$(^{+0.33})$ $(^{+0.31})$ (55) (6.8)			
(-0.27) (-0.26) (5.5) (0.6))		
$H \to WW$ [55,56] [57] $1.23^{+0.23}_{-0.21}$ $0.91^{+0.24}_{-0.21}$ 6.8 4.8			
$\begin{pmatrix} +0.21\\ -0.20 \end{pmatrix}$ $\begin{pmatrix} +0.23\\ -0.20 \end{pmatrix}$ (5.6))		
$H \to \tau \tau$ [58] [59] $1.41^{+0.40}_{-0.35} = 0.89^{+0.31}_{-0.28}$ (4.4) 3.4			
$\begin{pmatrix} +0.37\\ -0.33 \end{pmatrix}$ $\begin{pmatrix} +0.31\\ -0.29 \end{pmatrix}$ (3.3) (3.7))		
$H \rightarrow bb$ [38] [39] $0.62^{+0.37}_{-0.36}$ $0.81^{+0.45}_{-0.42}$ 1.7 2.0			
$\binom{+0.39}{-0.37}$ $\binom{+0.45}{-0.43}$ (2.7) (2.5))		
$H \to \mu\mu$ [60] [61] $-0.7 \pm 3.6 0.8 \pm 3.5$			
(±3.6) (±3.5)			
<i>ttH</i> production [28, 62, 63] [65] $1.9^{+0.8}_{-0.7}$ $2.9^{+1.0}_{-0.9}$ 2.7 3.6			
$\binom{+0.72}{-0.66}$ $\binom{+0.88}{-0.80}$ (1.6) (1.3))		

3σ:"兆候が見えた" 5σ:"発見した"

- メインの生成・崩壊過 程はほぼRun 1で発見 がすんだ。
- LHC Run 2では、一個 一個の過程の理解を 確立し、精密測定に 入っていく。

ATLAS-CONF-2015-044

結合の測定

κ = ^{gmeasured}/_{gSM} と定義して
 測定結果をκで示す。
 – 標準理論どおりならκ = 1

- いまのところ、標準理論の予言とよく一致しているが、測定誤差が大きい。
- 今後、データを増やして精密測定していく。
 → 標準理論からずれていれば、新しい物理がそこにある!!

ATLAS-CONF-2015-044

- ・ いまのところ、標準理論の予言とよく一致しているが、測定誤差が大きい。
- 今後、データを増やして精密測定していく。

→ 標準理論からずれていれば、新しい物理がそこにある!!

ATLAS-CONF-2015-044

LHC in 2015

Successful learning year of Run 2 (\sqrt{s} =13 TeV, 25 ns bunch spacing).

 \sqrt{s} =8 TeV, 50 ns in Run 1.

- □ The initial projections of integrated luminosity for 2015 were ~8-10 fb⁻¹.
- □ Finally achieved > 4 fb⁻¹ for ATLAS and CMS
- Slope at the end of the run better than in 2011, and not far from 2012 slope

• More than 1 fb⁻¹ produced last week of proton-proton operation

[fb]

- □ The main reasons for the lower value:
 - Start-up delays (~6 weeks)
 - wer value: Start-up delays (~6 weeks) Availability issues (radiation failures on the quench protection tunnel electronics Availability issues (radiation) solved now)
 - Difficulties to master electron clouds \rightarrow slower intensity ramp-up

2015データでの*H* → *γγ*, *H* → *ZZ*^{*} 測定

重い新粒子の生成しやすさ

陽子から、新粒子Xを作り出すだけの高エネルギーのグルーオンやクォークを引っ張り出 す確率は、陽子を高エネルギーに加速すれば高くなる (Parton Distribution Function)。 8⇒13 TeVの加速器エネルギー増強は、質量1(2) TeVの新粒子の生成を3-5(5-10)倍にす る。Run 2では新物理の発見ポテンシャルは大いに上がる。

Possible performance after YETS

- 2016 Production year, setting stage for Run 2:
 - 6.5 TeV
 - \circ β* reduction to 40 cm in ATLAS and CMS (β * = 80 cm in 2015)

Limited the maximum number of bunches to around 2400 for 2015 due to weakness of injection protection device.
 Exchange planned during winter stop
 Number of bunch (design) = 2808.

	Peak lumi E34 cm ⁻² s ⁻¹	Days proton physics	Approx. int lumi [fb ⁻¹]
2015	~0.5	~50	4
2016	1.2	160	~35

LHCの長期計画

• High Luminosity-LHC計画

HL-LHCで到達できるヒッグス測定の 精度 Run 1で±10%だった測定が、14 TeV, 3000 fb⁻¹貯めれば

 Run 1で±10%だった測定が、14 TeV, 3000 fb⁻¹貯めれば ±2-5%の精度で測定できる。

HL-LHCで期待される精度

HL-LHCでのInner Detector

- 現行のPixelは400 fb⁻¹、SCTは600 fb⁻¹、IBLも800 fb⁻¹の積算 ルミノシティ相当の放射線までしか耐えられない。
- ・ 瞬間ルミノシティも高くなるため、TRTのoccupancyも問題になる。

	LHC	HL-LHC
L ^{inst.}	1×10^{34}	5×10^{34}
N ^{pp collision} /Xing	23	140

・ IDを総入れ替え、すべてシリコン検出器にする。

HL-LHCでのInner Detector

- 現行のPixelは400 fb⁻¹、SCTは600 fb⁻¹、IBLも800 fb⁻¹の積算 ルミノシティ相当の放射線までしか耐えられない。
- ・ 瞬間ルミノシティも高くなるため、TRTのoccupancyも問題になる。

	LHC	HL-LHC
L ^{inst.}	1×10^{34}	5×10^{34}
N ^{pp collision} /Xing	23	140

- ・ IDを総入れ替え、すべてシリコン検出器にする。
 - 5 pixel + 4 strip layers

まとめ

- Run 1
 - LHC Run 1では、2012年にヒッグス粒子を発見した。
 - Run 1データで、様々なカップリングを±10 20%で測定した。
- Run 2
 - Run 2初年の2015年には、13 TeV運転を
 - 確立。0.5×10³⁴ cm⁻²s⁻¹を達成、4 fb⁻¹のデータを取得。
 - 2016年には、~1.2×10³⁴ cm⁻²s⁻¹を達成し、~35 fb⁻¹のデータを 取得の予定。
 - Run 2以降では、ヒッグス粒子の測定を精度を上げていく。
 - 新粒子への感度が大幅増大する。
 - $\frac{\sigma(13 \text{ TeV})}{\sigma(8 \text{ TeV})} \sim 3 5 \ (M_X = 1 \text{ TeV}), \ 20 40 \ (M_X = 3 \text{ TeV})$
- LS3 Upgrade
 - HL-LHCでは、ヒッグス粒子の様々なカップリングを±2-5%の精度 で測定する。
 - HL-LHCはLHCの5倍の瞬間輝度→IDを総入れ替え。
 - 新しいPixelとstrip型シリコン検出器を開発している。

セッションのプログラム

- 16:00-16:20 「ATLAS 実験の概要」 佐藤 構二(CiRfSE 素粒子構造部門)
- 16:20-16:50
 「ATLAS 実験におけるダイボソン共鳴事象の探索」

 大川 英希(CiRfSE 素粒子構造部門)
- 16:50-17:10 「ATLAS 実験における荷電ヒッグス粒子の探索」
 永田 和樹(筑波大学数理物質科学研究科物理学専攻)
- 17:10-17:30 「ATLAS 実験におけるヒッグス粒子対生成の探索」渕 遼亮(筑波大学数理物質科学研究科物理学専攻)
- 17:30-17:45 「HL-LHC へ向けたピクセル検出器のビームテスト解析」
 佐藤 和之(筑波大学数理物質科学研究科物理学専攻)
- 17:45-18:00 「HL-LHC ATLAS 実験用シリコンストリップセンサーの放射線耐性評価」 岩渕 周平(筑波大学数理物質科学研究科物理学専攻)

backup

LHC Run 1でのヒッグス粒子発見

• 2012年7月4日 CERNセミナーで発表

事象中のヒッグス粒子の質量を、相対性理論を利用して再構成した結果

Phys. Lett. B 716 (2012) 30

ヒッグス質量 Phys. Rev. Lett. 114, 191803 (2015年3月)

26

ヒッグス信号強度の測定結果

信号強度(断面積、崩壊頻度)は標準理論の予言値との比
 を測定している。

Luminosity Status

7 TeV dataset: 4.57 fb^{-1}

LHC Run 2 goals (2015 - 2018)

- □ Operate the LHC at 6.5 TeV (or higher).
- Operate with 25 ns bunch spacing.
 - For Run 1 operated with 50 ns spacing (e-cloud).
- □ Maximize the integrated luminosity & collect \ge 100 fb⁻¹.

Objectives for 2015:

- Learning year of Run 2 (6.5 TeV, 25 ns bunch spacing)
 - Energy: lower quench margins, lower beam loss tolerance
 - o 25 ns: electron cloud, UFOs, larger crossing angle
- Achieving reliable operation with 25 ns spacing is top priority.
 - $β^*$ at the IPs were relaxed to ease operation: $β^* = 80$ cm was selected while 60-40 cm was in reach. We plan to move to <u>40</u>-50 cm in 2016.

Integrated luminosity

- □ The initial projections of integrated luminosity for 2015 were ~8-10 fb⁻¹.
- Finally achieved > 4 fb⁻¹ for ATLAS and CMS
- Slope at the end of the run better than in 2011, and not far from 2012 slope
 - More than 1 fb⁻¹ produced last week of proton-proton operation
- The main reasons for the lower value:
 - Start-up delays (~6 weeks)
 - Availability issues (radiation failures on the quench protection tunnel electronics – solved now)
 - Difficulties to master electron clouds → slower intensity ramp-up

The 2015 proton run is finished now, this year will close with a 4 week lead ion run.

31

Luminosity production 2015

Luminosity production (25 ns):

- We spend 31% of the scheduled time delivering collisions to experiments
- (compared to 33 % in 2011 and 37% in 2012)

Peak Luminosity:

- o Run 1: 7.6×10³³ cm⁻²s⁻¹
- o Run 2: 5.1×10³³ cm⁻²s⁻¹

Design lumi:

1×10³⁴ cm⁻²s⁻¹

Electron cloud challenge

When operating with <u>positively charged beams</u> and <u>closely spaced bunches</u> electrons liberated on vacuum chamber surface can multiply and build up a electrons.

Consequences of e-cloud build-up:

- $_{\odot}\,$ Vacuum pressure increases \rightarrow interlocks triggered
- o Impact on beam quality (emittance growth, instabilities, particle losses)
- $_{\odot}$ Excessive energy deposition \rightarrow cryogenic cooling capacity and stability

The key parameter for e-clouds is the Secondary Emission Yield (SEY) of electrons from the vacuum chamber surface.

• SEY reduced by electron bombardement of the surface (SCRUBBING)

33

Scrubbing strategy

□ There is a strong dependence of e-cloud build up on bunch spacing:

- Conditioning requires a beam that is <u>more powerful</u> (→ more electron generation) than the beam used for operation !
- For 50 ns: scrubbing with 25 ns, then revert to 50 ns for operation.
- □ For 25 ns: try the same strategy → invented a new doublet beam to enhance the ecloud further.
- Doublet beam could not be used, too unstable beam SEY too high.

Possible performance after YETS

- Exchange of Injection absorbers should allow nominal train injection (288 bunches per injection)
 - Could help to complete scrubbing
- □ 2016 Production year, setting stage for Run 2:
 - 。 6.5 TeV
 - \circ β^* reduction to 40 cm in ATLAS and CMS
 - Not yet fully scrubbed for 25 ns
 - => Re-establish present conditions, good for operations up to ~2000 bunches, continue pushing

	Peak lumi E34 cm ⁻² s ⁻¹	Days proton physics	Approx. int lumi [fb ⁻¹]
2015	~0.5	~50	4
2016	1.2	160	~35

=> All options to be discussed at Evian and Chamonix Workshops

35

LS1中のアップグレード

- Pixel 検出器
 - 最内層に IBL を追加
 - ビームパイプも交換
 - サービスの交換
- Calorimeter
 - LV の交換
- Muon 検出器
 - EE chamber などの追加
- Software
 - ・ シミュレーション、再構成ツールの刷新 .
 - Gridソフトウェアの改善

Trigger

- New central trigger processor
- Tile Muon coincidence
- ・ High level trigger の再構築
- Fast TracK Trigger
 - L1Caloの改善

陽子陽子衝突 Good data

ATLAS pp 25ns run: August-November 2015

Inner Tracker		Calorimeters		Muon Spectrometer				Magnets		
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
93.5	99.4	98.3	99.4	100	100	100	100	100	100	97.8

All Good for physics: 87.1% (3.2 fb⁻¹)

Luminosity weighted relative detector uptime and good data quality (DQ) efficiencies (in %) during stable beam in pp collisions with 25ns bunch spacing at $\sqrt{s=13}$ TeV between August-November 2015, corresponding to an integrated luminosity of 3.7 fb⁻¹. The lower DQ efficiency in the Pixel detector is due to the IBL being turned off for two runs, corresponding to 0.2 fb⁻¹. Analyses that don't rely on the IBL can use those runs and thus use 3.4 fb⁻¹ with a corresponding DQ efficiency of 93.1%.

37

37

Layout

- Two baseline design to cover $|\eta| < 4.0$.
 - ➡ Inclined:
 - ✓ Pros: hit multiplicity, less silicon, less multiple scattering.
 - ✓ Cons: elaborate support structure.

- ➡ Long barrel:
 - ✓ pros: simple structure, less material.

✓ cons: study needed for tracking parameter resolutions.

High Luminosity LHC (HL-LHC)

