ATLAS 実験における荷電ヒッグス粒子の探索

筑波大学大学院 数理物質科学研究科 物理学専攻 博士後期課程3年 永田和樹

2

2016年 1月19日 CiRfSE workshop

重い荷電ヒッグス粒子探索

• もし、荷電ヒッグス粒子の発見できたら

→標準理論を超える物理の存在の証明

- 例: Minimal Supersymmetric Standard Model (MSSM)

- 重い荷電ヒッグス粒子探索 (200~600 GeV)
- 信号生成過程: $g\bar{b} \rightarrow \bar{t}H^+ \rightarrow \bar{t}t\bar{b} \rightarrow \bar{b}l^+ vb\bar{q}q\bar{b}$
- 重心系衝突エネルギー8 TeV、積分ルミノシティ20.3 fb⁻¹のデータを 使用

下図: 信号生成過程のファインマンダイヤグラム

解析の流れ

- 事象選別
 - レプトンやジェットの数、ジェットのフレーバータグ等で、対象とする
 事象を選別する
- 信号事象と背景事象の分離
 - 信号事象と背景事象の違いを特徴付けるような変数を 入力としてMVA(BDT)を行い、S/Bの分離を最適化する
- 生成断面積に対する制限の設定
 - MVAの結果を用いて荷電ヒッグス粒子の生成断面積に 対して制限を設定する

	2b-tags	≥ 3b-tags
4jets	コントロール	コントロール
5jets	コントロール	シグナル
>= 6jets	コントロール	シグナル

背景事象の構成要素

コントロール領域でのPost-fit plot

シグナル領域でのBDT outputの分布(post-fit)

- High massの方が背景事象と信号事象の分離がよくできる
- m_{H+} = 300 GeVにおいて、Signal+background fitの結果と Dataの分布が一致しない

生成断面積に対する制限の設定

Run1解析の公表

- 最終結果はH[±]→tbのs channelでの解析と合わせる形で出した
- JHEPに論文を2015/12/11にsubmit
 - リンク先: http://inspirehep.net/record/1409300
- 今はAccept待ち

C Attps://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults Previous results

New ATLAS/CMS Higgs Couplings Combination

Web page and conference note: ATLAS-CONF-2015-044

Higgs Group Publications

Full Title	Journal	Links	Status	Groups
Search for charged Higgs bosons in the $H^{\rm m} \rightarrow tb\$ decay channel in $p\$ collisions at $s = 8$ TeV using the ATLAS detector search for charged Higgs bosons in the $TLAS$ detector search for charged Higgs bosons in the $TLAS$ detector search for charged Higgs bosons in the $TLAS$ detector search for charged Higgs bosons in the $TLAS$ detector search for charged Higgs bosons in the $TLAS$ detector search for charged Higgs bosons in the $TLAS$ detector search for $TLAS$	JHEP	Inspire ⊉, arXiv ⊉, Figures ⊉	Submitted: 2015/12/11	HIGGS
Search for the Standard Model Higgs boson produced in association with a vector boson and decaying into a tau pair in pp collisions at s (s)=18, TeV with the ATLAS detector	Physical Review D	Figures	Submitted: 2015/11/26	HIGGS
Search for dark matter produced in association with a Higgs boson decaying to two bottom quarks in \$pp\$ collisions at \$\s = 8\$ TeV with the ATLAS detector	PRD	Inspire⊉, arXiv⊉, Figures⊉	Submitted: 2015/10/21	EXOT / HIGG
PUBLISHED Search for flavour-changing neutral current top quark decays \$t\to Hq\$ in \$pp\$ collisions at \$\sqrt{s}=8\$ TeV with the ATLAS detector	JHEP	Inspire⊉, arXiv⊉, Figures⊉	JHEP 12 (2015) 061 (Submitted: 2015/09/20)	TOPQ / HIGG

10

- LHC-ATLAS実験で取得された、重心系衝突エネルギー8 TeV、 積分ルミノシティ20.3 fb⁻¹のデータを使ってtbに崩壊する重い 荷電ヒッグス粒子探索を行った(200~600 GeV)
- 600 GeVを除くすべての荷電ヒッグス粒子の質量点において、 データの超過が見られた
 - 250、300、450 GeVにおいて2.3~2.4σのexcess
- m_{H+} = 300 GeV、σ×Γ=1.65pbに対応する信号事象を入れ てExpected Limitを計算し、Ovserved Limitと比較した。その結 果、Ovserved Limitのexcessは背景事象のmissmodelingが原 因である可能性が高い
- MSSMのm_h^{mod-}シナリオ、tanβ=0.5に対応するモデルに対して、200~300、350~400 GeVまでの領域を排除した

Back up

Signal and Background Modeling *Background: common with ttH(bb) group ¹³

Background process	Subcomponent	Generator & parton shower	(in pb)	Normalization
$t\overline{t}$ with at least one	e lepton l	Powheg & Pythia	137.3	top and $t\overline{t}$ Pt reweighting $t\overline{t}$ +HF reweighting
	t-channel (with l)	AcerMC & Pythia Powheg &	28.4	
Single top	$s\mbox{-}{\rm channel}$ (with $l)$	Pythia Powheg &	1.8	Theoretical cross section
	Wt-channel	Pythia	22.4	
	$W(l\nu)$ +jets		3.6×10^{4}	
W + jets	$Wb\overline{b} + \text{jets}$	Alpgen & Pythia	1.5	W Pt reweighting
	$Wc\overline{c}$ + jets		4.8	
	W + c + jets $Z/\alpha^*(M) + \text{jets}$		1.7	
	m(ll) > 60 GeV		3.4×10^3	
Z + jets	$Z/\gamma^*(ll)bb+jets,$ m(ll) > 30 GeV $Z/\gamma^*(ll)c\overline{c}+jets,$	Alpgen & Pythia	41.3	Z Pt reweighting
	m(ll) > 30 GeV		84.8	
	WW		29.7	
Diboson	ZZ	Alpgen & Herwig	1.5	Theoretical cross section
	WZ		2.3	
	WZ (with one l)	Sherpa MadCraph &	6.01	
$t\overline{t} + V$		Pythia	0.44	Theoretical cross section
$t\bar{t}H(m_H = 125 \text{ GeV})$	Semilepton	Powhel & Pythia	0.0566	Theoretical cross section
$ttH(m_H = 125 \text{ GeV})$	Dilepton		0.0136	D
Misidentified le	pton	Douthor V.	e :	Data
$H^+(m_{H^+} = 180 \sim 600 \text{ GeV})$ $H^+(m_{H^+} = 180 \sim 600 \text{ GeV})$	Semilepton Dilepton	Powneg & Pythia	1.0	Theoretical cross section

Analysis Outline

- Event selection
 - Based on standard top group selection: 1 lepton, > 3 jets, MET
 - 1lepton trigger:
 - EF e24vhi medium1 or EF e60 medium1
 - EF mu24i tight or EF mu36 tight
 - Electron: Author 1 or 3, Tight, Pt > 25 GeV, $|\eta| < 2.47 (1.37 < |\eta| < 1.52 excluded)$, $z_0 < 2mm$, p_T and $|\eta|$ dependent tracking isolation (corresponding to 90% signal efficiency)
 - Muon: Combined and Tight, Pt > 25 GeV, $|\eta| < 2.47$, $z_0 < 2mm$, Track isolation using p_T dependent cone, $\Sigma p_T < 0.05^* p_T$
 - Jets: Anti-kt 0.4, LCW, pt > 25 GeV, $|\eta|$ <2.5, Jet vertex fraction cut: |JVF|>0.5 for pT < 50 GeV and $|\eta|$ <2.4
 - B-tag: MV1, working point= 70% efficiency for b-jets in tt events
 - MET: MET AntiKt4LCTopoJets tightpp
 - Separate signal and control regions
 - Signal region: >= 5jets and >= 3b-tags
 - Control region: ==4jets and >= 2b-tags, >= 5jets and == 2b-tags
- S/B separation
- Limit setting

Pre-fit event yield table for background

Process	4j(2b)	5j(2b)	≥6j(2b)	4j(≥3b)	≥5j(≥3b)
tī+LF	80300 ± 9900	38700 ± 7400	19300 ± 5300	6300 ± 1000	5600 ± 1600
$t\bar{t}+c\bar{c}$	5200 ± 2900	4500 ± 2600	3800 ± 2300	740 ± 410	1800 ± 1000
$t\bar{t}+b\bar{b}$	1720 ± 940	1550 ± 830	1390 ± 820	660 ± 370	2300 ± 1200
tīH	33.7 ± 4.6	44.6 ± 5.4	68.9 ± 9.1	15.5 ± 2.5	87 ± 11
$t\bar{t}V$	128 ± 40	151 ± 47	189 ± 59	17.6 ± 5.7	85 ± 27
Single-top	5020 ± 770	1970 ± 420	880 ± 270	360 ± 83	330 ± 110
W+jets	3400 ± 1700	1270 ± 720	640 ± 400	190 ± 100	170 ± 100
Z+jets	1330 ± 670	400 ± 220	150 ± 95	53 ± 31	49 ± 39
VV	232 ± 69	108 ± 41	52 ± 25	10.7 ± 3.6	13.7 ± 6.0
Multi-jets	2160 ± 870	670 ± 260	330 ± 150	160 ± 67	150 ± 100
Total bkg	100000 ± 11000	49300 ± 8600	27100 ± 6600	8500 ±1300	10600 ± 2500
Data	102 462	51 421	26948	9 102	11 945

Table 1: Expected event yields of the SM background processes and observed data in the five categories. The first four columns show the event yields in the CR, the last column shows the event yields in the SR. The uncertainties include statistical and systematic components (systematic uncertainties are discussed in section 4.3).

Pre-fit event yield table for signal (MSSM m_{hmod-})

m_{H^+} [GeV]	$\tan\beta$	4j(2b)	5j(2b)	≥6j(2b)	4j(≥3b)	≥5j(≥3b)
	0.5	2580 ± 420	1670 ± 190	1050 ± 300	730 ± 190	1750 ± 200
200	0.7	1290 ± 210	834 ± 93	520 ± 150	366 ± 95	880 ± 100
	0.9	760 ± 120	493 ± 55	309 ± 88	216 ± 56	518 ± 59
	0.5	397 ± 69	406 ± 44	390 ± 100	211 ± 56	756 ± 76
400	0.7	200 ± 35	204 ± 22	197 ± 51	106 ± 28	380 ± 38
	0.9	119 ± 21	121 ± 13	117 ± 31	63 ± 17	226 ± 23
	0.5	71 ± 14	85 ± 12	107 ± 29	36 ± 11	183 ± 23
600	0.7	34.7 ± 6.9	41.5 ± 5.6	52 ± 14	17.4 ± 5.3	89 ± 11
	0.9	19.8 ± 3.9	23.7 ± 3.2	29.8 ± 8.1	10.0 ± 3.0	50.9 ± 6.5

Table 2: Number of expected signal events in the five categories for a few representative points of the $m_h^{\text{mod}-}$ scenario of the MSSM. The last column shows the event yields in the SR. The expected uncertainties contain statistical and systematic components (systematic uncertainties are discussed in section 4.3). Uncertainties on the cross sections and branching fractions for the $m_h^{\text{mod}-}$ scenario are not included.

BDT input variables for training

- The scalar sum of the P_T of all selected jets
- The pT of the leading jet
- The invariant mass of the two b-tagged jets that are closest in $\varDelta R$
- The second Fox–Wolfram moment, calculated from the selected jets
- The average ΔR between all pairs of b-tagged jets in the event

*それぞれの荷電ヒッグスのmass pointごとにトレーニングをおこなった

Fox-Wolfram Moments (H+ analysis)

• Fox-Wolfram moments , W_l (l = 0, 1, 2, ...)

•
$$W_l = \sum_{i,j=0}^N \frac{\left|\overrightarrow{p_i}\right| \left|\overrightarrow{p_j}\right|}{E^2} P_l(\cos \Omega_{ij})$$

Pi,j= ジェットの運動量 E= イベント中のジェットのエネルギーの和 $P_l(\cos \Omega_{ij}) = ルジャンドル多項式$ $\cos \Omega_{ij} = \cos \theta i \cos \theta j + \sin \theta i \sin \theta j \cos(\phi i - \phi j)$

Pre-fit plots in signal region (part1)

Pre-fit plots in signal region (part2)

Pre-fit plot for BDT output in control region

* 青線はData数にnormalizeされている

High massの方が信号事象と背景事象の分離が良い

 $H^+ \rightarrow tb$: generator

 $H^+ \rightarrow tb$: scales

 $H^+ \rightarrow tb$: PDF

1

1

1

N

SN

S١	/ste	matic	uncer	rtaintv	/
5	yste	matic	ancer	cantey	/

Course of uncorte inte	Fractional un	certainty [%]
Source of uncertainty	$m_{H^+} = 300 \text{ GeV}$	$m_{H^+} = 500 \text{ GeV}$
<i>tī</i> modelling	31	33
Jets	21	9.5
Flavour tagging	19	24
Other background modelling	9.6	12
Signal modelling	8.0	3.5
Lepton	1.2	0
Luminosity	1.1	0.4
Statistics	8.9	18

Table 3: Fractional uncertainty on the parameter of interest relative to its total uncertainty, broken down into various sources and for two mass hypotheses. The values are obtained after fits to the background-plus-signal hypothesis. The largest contribution to the total uncertainty comes from the $t\bar{t}$ modelling.

Symmetrised pre-fit uncertainties in %

Uncertainty	$t\bar{t}+b\bar{b}$	$t\bar{t}+c\bar{c}$	$t\bar{t}$ +LF	$t\bar{t}H$	$t\bar{t}V$	Single-top	W+jets	Z+jets	VV	Multi-jets	H^+
Cross section	50	50	5.5	11	30	4.5	54	54	34	9 4 9	
Luminosity	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	-	2.8
Light jet rej.	0.68	2.0	4.7	0.61	1.9	4.5	13	18	5.5	-	0.76
b-tagging	6.6	4.8	5.2	5.7	5.5	5.8	4.5	4.5	6.6	-	6.1
c-tagging	0.92	6.9	5.5	1.3	4.1	4.9	5.7	3.1	4.8	-	0.68
Jet sys.	5.1	6.7	8.6	3.4	3.8	12	16	45	21	-	4.3
Lepton sys.	1.5	1.5	1.5	1.5	0.06	1.6	1.7	2.1	1.7	-	1.5
$t\bar{t}$ reweightings	8.2	13	8.1		-	-	-	-	-	-	-
$t\bar{t}$ parton shower	6.3	16	22	-	-	-	-	-	~		-
Other bkg model.	-	-	-		0.73	17	4.9	4.6	=	67	-
H^+ modelling	5	-	-	-	-	. 	0755	1990 - 1990 -	π	0 - 01	4.9

Nuisance parameters that have large correlations

Post-fit pulls and impact of the 15 most relevant uncertainties on the best-fit value

Post-fit pulls and impact of the relevant uncertainties on the best-fit value

post-fit後の事象数

Process	4j(2b)	5j(2b)	≥6j(2b)	4j(≥3b)	≥5j(≥3b)
tt+LF	83600 ± 1900	41800 ± 1400	21000 ± 1000	6750 ± 270	6650 ± 390
$t\bar{t}+c\bar{c}$	3200 ± 1700	2600 ± 1400	2100 ± 1200	490 ± 230	1260 ± 570
$t\bar{t}+b\bar{b}$	1500 ± 530	1300 ± 440	1050 ± 450	600 ± 210	2040 ± 550
tīH	34.6 ± 3.8	44.6 ± 4.9	66.7 ± 7.8	16.2 ± 1.9	87 ± 10
$t\bar{t}V$	132 ± 39	153 ± 46	186 ± 57	18.5 ± 5.4	87 ± 26
Single-top	5030 ± 530	1970 ± 270	860 ± 170	386 ± 55	342 ± 70
W+jets	4500 ± 1100	1660 ± 470	750 ± 270	250 ± 62	220 ± 69
Z+jets	1330 ± 560	370 ± 190	137 ± 80	56 ± 23	36 ± 27
VV	223 ± 63	103 ± 39	47 ± 23	10.4 ± 3.1	15.0 ± 5.3
Multi-jets	2230 ± 590	690 ± 180	330 ± 100	160 ± 46	208 ± 88
Total bkg	101800 ± 2200	50700 ± 1600	26600 ± 1100	8730 ± 330	10950 ± 490
H^+	700 ± 310	600 ± 260	430 ± 190	370 ± 160	990 ± 440
Data	102 462	51 421	26 948	9 102	11 945
Data	102 +02	51721	20 940	102	11 775

28

BDT output distribution in signal region (post background only fit, mH+=400 GeV)

2 Higgs Doublet Model

Added one Higgs doublet to SM

 $-h^0$, H⁰ (CP even), A⁰ (CP odd), H[±](charged)

- Assume the discovered Higgs = light CP-even Higgs boson, h^0
- 4 Types
 - Different couplings of quarks, leptons and vector bosons to Higgs fields

Table: Coupling scale factor: $k = g^{2HDM}/g^{SM}$ (g^{2HDM} =light Higgs boson coupling)

Coupling scale factor	Type I	Type II	Type III	Type IV
κ_V	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
Ku	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$
Ка	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$
ĸı	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$

 $\tan\beta = \frac{v^2}{v^1}$

 α : mixing angle of h⁰ and H⁰ v₁, v₂=vacuum expectation values (plural)

- Different rates of h⁰ productions and decays from SM Higgs
- **Constrain 2HDM parameters**

31

32/15

Stop and Sbottom mass

- Radiative correction to Higgs mass
 - top/stop sector

- No mixing: $mh \le 122 \text{ GeV}$
- mh max: mh \leq 135 GeV
- tau/stau and bottom/sbottom sector (high tanβ)
- mass matrix for $\tilde{t_R}$, $\tilde{t_L}$ and \tilde{b}_R , \tilde{b}_L eigenstates

$$\mathcal{M}_{\tilde{t}}^{2} = \begin{pmatrix} M_{\tilde{t}_{L}}^{2} + m_{t}^{2} + \cos 2\beta (\frac{1}{2} - \frac{2}{3}s_{w}^{2})M_{Z}^{2} & m_{t}X_{t}^{*} \\ m_{t}X_{t} & M_{\tilde{t}_{R}}^{2} + m_{t}^{2} + \frac{2}{3}\cos 2\beta s_{w}^{2}M_{Z}^{2} \end{pmatrix},$$

$$\mathcal{M}_{\tilde{b}}^{2} = \begin{pmatrix} M_{\tilde{b}_{L}}^{2} + m_{b}^{2} + \cos 2\beta (-\frac{1}{2} + \frac{1}{3}s_{w}^{2})M_{Z}^{2} & m_{b}X_{b}^{*} \\ m_{b}X_{b} & M_{\tilde{b}_{R}}^{2} + m_{b}^{2} - \frac{1}{3}\cos 2\beta s_{w}^{2}M_{Z}^{2} \end{pmatrix},$$

where

$$m_t X_t = m_t (A_t - \mu^* \cot \beta), \quad m_b X_b = m_b (A_b - \mu^* \tan \beta).$$

- At, Ab: trilinear Higgs-stop, sbottom coupling $s_w: \sqrt{1 cw}$, $c_w = Mw/Mz$
- μ: Higgsino mass

Parameter setting (m_h mod)

- The $m_{\rm h}^{\rm mod}$ scenario:

Departing from the parameter configuration that maximizes $M_{\rm h}$, one naturally finds scenarios where in the decoupling region the value of $M_{\rm h}$ is close to the observed mass of the signal over a wide region of the parameter space. A convenient way of modifying the $m_{\rm h}^{\rm max}$ scenario in this way is to reduce the amount of mixing in the stop sector, i.e. to reduce $|X_{\rm t}/M_{\rm SUSY}|$ compared to the value of ≈ 2 (FD calculation) that gives rise to the largest positive contribution to $M_{\rm h}$ from the radiative corrections. This can be done for both signs of $X_{\rm t}$.

$$\begin{split} m_{\rm h}^{\rm mod+}: & M_{\rm SUSY} = 1000 \text{ GeV}, \mu = 200 \text{ GeV}, M_2 = 200 \text{ GeV}, \\ & X_{\rm t}^{\rm OS} = 1.5 \, M_{\rm SUSY} \text{ (FD calculation)}, \\ & X_{\rm t}^{\rm \overline{MS}} = 1.6 \, M_{\rm SUSY} \text{ (RG calculation)}, \\ & A_{\rm b} = A_{\tau} = A_{\rm t}, M_{\tilde{\rm g}} = 1500 \text{ GeV}, \\ & M_{\tilde{\rm l}_3} = 1000 \text{ GeV} \text{ .} \end{split}$$

$$\end{split}$$

$$\begin{split} m_{\rm h}^{\rm mod-}: & M_{\rm SUSY} = 1000 \text{ GeV}, \\ \mu = 200 \text{ GeV}, \\ M_2 = 200 \text{ GeV}, \\ \end{split}$$

$$X_{t}^{OS} = -1.9 M_{SUSY} \text{ (FD calculation)}, \\ X_{t}^{\overline{MS}} = -2.2 M_{SUSY} \text{ (RG calculation)}, \\ A_{b} = A_{\tau} = A_{t}, \\ M_{\tilde{g}} = 1500 \text{ GeV}, \\ M_{\tilde{l}_{3}} = 1000 \text{ GeV}.$$
(363)

MSSM Higgs Decay

- A MSSM Higgs decay mode
 The Higgs mass
- tanβ
- Scenario: Changing parameters related with SUSY
 - mh max: h0 mass is maximized for fixed tanβ, mA (h0 < 135 GeV)
 - mh mod ±: modification of mh max(±: sign of |X_t/M_{susy}|)

*Requirement of 2HDM: Triangle anomalies from higgsino is canceled by introducing additional Higgs doublet

Direct search: MSSM $H^{\pm} \rightarrow \tau^{\pm} \nu$

36/15

- ATLAS-CONF-2014-050
- Production process
 - mH^{\pm} < m_{top}: gluon fusion
 - Top quark decay
 - mH[±]> m_{top}: With top quark (hadronic decay)
 - Cross section: Evaluated on 4Flavor Scheme and 5 Flavor Scheme
- $H^{\pm} \rightarrow \tau^{\pm} \nu$ decay
 - mH[±]< m_{top}: dominant decay
 - mH[±]> m_{top}: second dominant decay
 - ~1/5 \times Br(H[±] \rightarrow tb) in high tan β

 $\rm H^{\scriptscriptstyle +}$ Decay mode for $\rm m_h$ max scenario

4FS and 5FS

- 4FS and 5FS: Different way of ordering perturbation theory
- 4FS (gg \rightarrow bbarH)
 - mb >> QCD scale, calculated order by order
 - not b-quarks as partons in the proton
- 5FS (gg \rightarrow (bbar)H
 - logarithms of the form ln(μ F/mb) in gluon splitting, μ F \approx mH/4
 - − 4FS: Collinearly b-quarks and H >> 4mb, $ln(\mu F/mb) \rightarrow \infty$
 - $-\,$ 5FS: ln($\mu F/mb)$ terms can be summed to all orders in perturbation theory by introducing bottom parton densities

Santander matching

Charged Higgs (300 GeV) cross section

Expected cross section for H⁺ production in association with a top quark (4FS and 5FS matched) times the branching fraction of H⁺ \rightarrow tb, as a function of (a) m_H⁺ in the m_h^{mod-} scenario and (b) tanβ for various MSSM scenarios

39

Charged Higgs(MSSM m_{hmod}) cross section

Expected cross section for H⁺ production in association with a top quark (4FS and 5FS matched) times the branching fraction of H⁺ \rightarrow tb, as a function of (a) m_H⁺ in the m_h^{mod-} scenario and (b) tanβ for various MSSM scenarios

Expected cross sections m_h^{mod-} benchmark model of the MSSM

m_{H^+} [GeV]		200			400			600	
aneta	0.5	0.7	0.9	0.5	0.7	0.9	0.5	0.7	0.9
$\sigma(gg/gb \to t(b)H^+)$ [pb]	6.86	3.50	2.11	1.07	0.55	0.33	0.23	0.12	0.072
$BR(H^+ \to tb) \ [\%]$	99.8	97.8	95.7	98.6	97.3	95.6	95.2	90.9	85.6
Γ_{H^+} [GeV]	4.19	2.18	1.34	64.9	33.6	20.7	114	61.2	39.3

Observed and expected 95% CL limits on $\sigma(gb \rightarrow tH^+) \times BR(H^+ \rightarrow tb)$

m_{H^+} [GeV]	Observed	Expected	-2σ	-1σ	1σ	2σ
200	6.28	3.78	2.03	2.73	5.23	7.05
225	3.83	2.40	1.29	1.73	3.33	4.55
250	4.20	1.98	1.06	1.43	2.76	3.81
275	2.78	1.69	0.91	1.22	2.34	3.18
300	2.89	1.44	0.77	1.04	2.00	2.75
350	1.57	0.96	0.52	0.69	1.34	1.83
400	1.04	0.64	0.35	0.46	0.90	1.23
450	0.91	0.45	0.24	0.32	0.64	0.88
500	0.68	0.40	0.22	0.29	0.57	0.79
550	0.51	0.31	0.17	0.23	0.45	0.64
600	0.24	0.25	0.13	0.18	0.36	0.51

Search and Limit: $H^\pm \to \tau^\pm \nu$

- Hadronic τ channel
- ATLAS-CONF-2014-050
- Low mass: $80 < mH^{\pm} < 160$ GeV for gluon fusion
- High mass: 180 < mH[±] < 1000 GeV for with top quark
- Background (Data driven)
 - True τ: Embedding method
 - jet $\rightarrow \tau$: Mis joint identified lepton $\frac{10^2}{2}$
 - Background (MC)
 - e/μ→τ
- Upper limit on Br (t \rightarrow bH[±] \rightarrow Br($\tau\nu$)): 1.3% ~ 0.23 % *previous: 2.1%~0.24%
- Upper limit:
 0.76 pb at 180 GeV
 4.5 fb at 1000 GeV
 *previous: 0.9~0.017pb

Figure 8: Expected and observed 95% CL model-independent upper limits on $\mathcal{B}(t \rightarrow H^+b) \mathcal{B}(H^+ \rightarrow \tau^+ \nu_{\tau})$ with $m_{H^+} = 80\text{-}160 \text{ GeV}$ (left), and on $\sigma(pp \rightarrow \overline{t}(b)H^+) \mathcal{B}(H^+ \rightarrow \tau^+ \nu_{\tau})$ with $m_{H^+} = 180\text{-}600 \text{ GeV}$ (right) for the $H^+ \rightarrow \tau^+ \nu_{\tau}$ search in the τ_h +jets final state. The regions above the solid lines are excluded.

Figure 8: Expected and observed 95% CL model-independent upper limits on $\mathcal{B}(t \rightarrow H^+b) \mathcal{B}(H^+ \rightarrow \tau^+ \nu_{\tau})$ with $m_{H^+} = 80\text{-}160 \text{ GeV}$ (left), and on $\sigma(\text{pp} \rightarrow \overline{t}(b)H^+) \mathcal{B}(H^+ \rightarrow \tau^+ \nu_{\tau})$ with $m_{H^+} = 180\text{-}600 \text{ GeV}$ (right) for the $H^+ \rightarrow \tau^+ \nu_{\tau}$ search in the τ_h +jets final state. The regions above the solid lines are excluded.

Figure 10: Expected and observed 95% CL upper limits on $\sigma(p\underline{p} \rightarrow \overline{t}(b)H^+)$ for the combination of the $\mu\tau_h$, ℓ +jets, and $\ell\ell'$ final states assuming $\mathcal{B}(H^+ \rightarrow t\overline{b}) = 1$. The region above the solid line is excluded.

Text for exclusion reagion CMS combine result

Figure 11: Exclusion region in the MSSM $m_{\rm H^+}$ -tan β parameter space for $m_{\rm H^+} = 80-160 \,\text{GeV}$ (left column) and for $m_{\rm H^+} = 180-600 \,\text{GeV}$ (right column) in the updated MSSM $m_{\rm h}^{\rm max}$ scenario (top row) and $m_{\rm h}^{\rm mod-}$ scenarios [29, 33] (bottom row). In the upper row plots the limit is derived from the H⁺ $\rightarrow \tau^+ \nu_{\tau}$ search with the $\tau_{\rm h}$ +jets final state, and in the lower row plots the limit is derived from a combination of all the charged Higgs boson decay modes and final states considered. The $\pm 1\sigma$ and $\pm 2\sigma$ bands around the expected limit are also shown. The light-grey region is excluded. The red lines depict the allowed parameter space for the assumption that the discovered scalar boson is the lightest CP-even MSSM Higgs boson with a mass $m_{\rm h} = 125 \pm 3 \,\text{GeV}$, where the uncertainty is the theoretical uncertainty in the Higgs boson mass calculation.

Figure 10: Expected and observed 95% CL limits on the *s*-channel production cross section times branching fraction for $H^+ \rightarrow tb$ as a function of the charged Higgs boson mass, in the (a) lepton+jets final state and (b) all-hadronic final state, including all systematic uncertainties, using a narrow-width approximation.

 $\frac{Sens13TeV}{Sens8TeV} = \frac{\sigma sig13TeV \times \mathcal{L} sig13TeV}{\sigma sig8TeV \times \mathcal{L} sig8TeV} / \frac{\sqrt{\sigma b kg13TeV \times \mathcal{L} sig13TeV}}{\sqrt{b kg8TeV \times \mathcal{L} b kg8TeV}} = ~3/\sqrt{3} * \text{Lumiが同じ、かつ600GeV}$

ttbar cross section

B-tag algorithm

- MV1: multivariate tagging algorithm
 - IP3D: 主要崩壊点に対するtrackの衝突係数
 - SV1: 2次崩壊点
 - JetFitter: CハドロンやBハドロンの崩壊の幾何学 的特徴