

Ryosuke FUCHI (U.Tsukuba)

2016年1月19日 CiRfSE Workshop

Outline

- ◎ 導入
 - ヒッグス粒子の発見、ヒッグス粒子対生成の物理
 - 解析チャンネルの選定
- bbtautau解析
 - 解析の流れ
 - 結果
- 他チャンネルと合わせた結果
- ◎ まとめ

ヒッグスボゾンの発見&測定

- ヒッグス粒子: 質量を与える粒子
- 2012年にATLAS&CMSにより発見!!
 $H \rightarrow \gamma\gamma, H \rightarrow ZZ^* \rightarrow 4l, H \rightarrow WW^* \rightarrow e\nu\mu\nu$
- SMヒッグスか検証が大事
- ◎ 測定の時代へ

筑波大学

University of Tsukuba

質量 $m_h = 125.36 \pm 0.37(stat) \pm 0.18(syst)$ $H \rightarrow \gamma\gamma, H \rightarrow ZZ^* \rightarrow 4l$ 信号強度 $\mu = 1.18^{+0.15}_{-0.14}$ all channels combined

結合 湯川結合の証拠 ATLAS 4.5 sigma $H \rightarrow \tau\tau$ analysis mu=1.44+0.42-0.37CP測定 棄却(>97.8%): $J^P = 0^-, 1^+, 1^-, 2^+$ $H \rightarrow \gamma\gamma, H \rightarrow ZZ^* \rightarrow 4l, H \rightarrow WW^* \rightarrow l\nu l\nu$ W どれもSMと無矛盾!!

19/01/2016

CiRfSE Workshop

(3)

ヒッグスボゾン自己結合

- ヒッグスボゾンの自己結合は最も興味深い課題のひとつ
- Brout-Engler-Higgs(BEH)機構の直接検証

(di-higgs)の探索が最後のカギ!

- <u> 動機</u>
 - 現在のデータ量で評価
 - 解析手法の確立

19/01/2016 CiRfSE Workshop

BSMにおけるヒッグスボゾン対生成

<u>標準模型を超える物理(BSM)</u>

- Non-resonant
 - 3点結合の結合定数がSMの予測と異なる場合、
 - 他のヒッグス対生成過程の<mark>断面積増大</mark>が期待される

BSMにおけるヒッグスボゾン対生成

標準模型を超える物理(BSM)

Resonant

5つの場

scalar

pseudoscalar

chargedhiggs

- Two Higgs Doublet Model
- スカラーヒッグス二重項を2つ要求

$$\phi_i = \begin{pmatrix} \phi_i \\ \frac{1}{\sqrt{2}}(v_i + \phi_i + i\chi_i) \end{pmatrix} \quad i = 1, 2$$

h, H

Α

 H^{\pm}

19/01/2016

CiRfSE Workshop

6

•

その他のBSMも多数

探索チャンネル

 $hh \to bb au au$

bbyy, bbbbの解析がなされていた bbtautauは本研究が<mark>世界初の解析</mark>

	bb	WW	au au	ZZ	$\gamma\gamma$
bb	32	25	7.1	3.1	0.26
WW	-	5	2.8	1.2	0.1
au au	-	-	0.39	0.34	0.029
$\mathbf{Z}\mathbf{Z}$	-	-	-	0.076	0.013
$\gamma\gamma$	-	-	-	-	0.000053

<u>利点</u>

- ▶ 高い崩壊分岐比: 7.1%
- ◎ 不変質量を再構成できる
- クリーンな信号
- トリガーの問題がない

タウレプトンの崩壊

- *τ*レプトン対の崩壊は*τ*レプトンの崩壊によって3つに分類される
 di-lepton, semi-lepton and all-hadron
- 本解析では片方のタウレプトンが軽いレプトン(e, mu)に崩壊する semi-leptonチャンネルを用いる。<u>ゴールデン・チャンネル</u> <u>利点</u>
 - di-lepton semi-lepton all-hadronic ・高い崩壊分岐比: 46% $12 \ \%$ 46 %42 %・クリーンな信号 観測する物理オブジェクトは トリガーの問題がない 2つのボトムクォーク、1つのハドロニックタウ、 $hh \to bb \tau_{lep} \tau_{had}$ 及び1つのレプトン(電子/ミューオン) 19/01/2016 8 CiRfSE Workshop

ττ+2jetの選別

1. single lepton triggerを要求 Event 2. 終状態の物理オブジェクトを要求 pre-selection 1つのレプトン(= e/ μ), 1つのhadronic- τ , 2つ以上のjet 3. レプトンとhadronic-*て*の逆電荷を要求 4. Z->||事象を除去するために以下を要求 Event selection 2つ以上のレプトン(=e/μ)を含む事象を除去 (di-lepton veto) このとき用いるレプトンは2.よりもゆるい定義を用いる $m_{\rm T} = \sqrt{2p_{\rm T}^{\ell} E_{\rm T}^{\rm miss}} \left(1 - \cos\Delta\phi \left(\ell, E_{\rm T}^{\rm miss}\right)\right)$ leptonとMETのmT Signal Region pre-selection後の分布 preselection $\mu \tau_{had} + e \tau_{had}$ - dataとモデルがよく й 1200 1000 - Data Top quark 合っている Z→ττ+jets Others 800 **Fake** τ **Systematics** Limit H(300) hh(20 pb) 600 Fake *T*背景事象 Non-reso. hh(20 pb) ✓ jet -> hadronic- T に誤同定された事象 400 200 ✓ W+jets, QCD などが含まれる 40 60 80 100120140160180200 20 m^{I,v}_T [GeV] 19/01/2016 9 CiRfSE Workshop

hh->bbtautauの選別(例)

final discriminant@signal region

Limit on bbtautau Analysis

University of Tsukuba

他のチャンネルと合わせた結果

Non-resonant探索

Analysis	$\gamma\gamma bb$	$\gamma\gamma WW^*$	bb au au	bbbb	Combined			
	Upper limit on the cross section [pb]							
Expected	1.0	6.7	1.3	0.62	0.47			
Observed	2.2	11	1.6	0.62	0.69			
	Upper	limit on t	he cross	section	relative to the SM prediction			
Expected	100	680	130	63	48			
Observed	220	1150	160	63	70			

√標準模型の70倍の生成断面積を除外

✓ 解析感度

bbbb >> bb $\gamma \gamma \sim$ bbtt >> WW $\gamma \gamma$

他のチャンネルと合わせた結果

Resonant探索

✓ 以下の断面積を除外
 2.1 pb @ 260 GeV
 0.011 pb @1000 GeV

✓解析感度
< 400 GeV: bbγγ</p>
400 - 500 GeV: bbττ
> 500 GeV: bbbb

19/01/2016

CiRfSE Workshop

14

まとめ

- di-higgsの物理はBEH機構の直接検証において重要
- 様々なBSMにおいて感度がある
- 世界で初めてhh->bbtautau channelの解析を行った
- non-resonant探索においてSMで予測されるgghhの生成断面積の160倍
 を棄却
- resonant探索において4.2 pb (260 GeV) 0.46 pb (1000 GeV)を棄却
- 他チャンネルとcombineした

<u>non-resonant</u>

- SMの70倍をexclude
- 2位のbb アアと肉薄(all-had channelに期待)

<u>resonant</u>

- 2.1 pb (260 GeV) 0.011 pb (1000 GeV)を棄却
- 400-500 GeVでbbtautauは最高感度

