Search for the QCD Critical Point -Fluctuations of Conserved Quantities in High Energy Nuclear Collisions at RHIC

Xiaofeng Luo (罗晓峰)

Central China Normal University (CCNU) Jan. 19, 2016

Big bang

Quark-Gluon Plasma (**QGP**): a state of matter where the quarks and gluons are the relevant degrees of freedom

The universe after expanding and cooling down went through **QGP** phase few µs after the Big-Bang

Xiaofeng Luo

Experiments

Establishing Quark Gluon Plasma (I): Jet quenching

Eur.Phys.J. C72 (2012) 1945

Interpretation : Energy loss of parton in a hot dense medium.

back-to-back jets disappear

Nuclear Modification Factor:

$$R_{AA}(p_T) = \frac{1}{T_{AA}} \frac{d^2 N^{AA} / dp_T d\eta}{d^2 \sigma^{NN} / dp_T d\eta}$$

1992, Gyulassy, XNW: Suppression of leading hadrons due to jet quenching.

Xiaofeng Luo

Number of constituent quark (NCQ) scaling

Xiaofeng Luo

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -raising many new questions

http://www.bnl.gov/rhic/news2/news.asp?a=303&t=pr

RHIC White Paper at 2005

BNL -73847-2005 Formal Report

Hunting the Quark Gluon Plasma

RESULTS FROM THE FIRST 3 YEARS AT RHIC Assessments by the experimental collaborations April 18, 2005

BROOKHAVEN

Experimental Observations support the formation of strongly interacting Quark Gluon Plasma at RHIC.

Xiaofeng Luo

Nature of QCD Phase Transition (μ_B =0): Crossover

No significant volume dependence

 1^{st} order : Peak height ~ V Peak width ~ 1/V Cross over : Peak height ~ const. Peak width ~ const. 2^{nd} order : Peak height ~ V^{α}

hotQCD, Phys.Rev. D85, 054503 (2012). Phys. Rev. D 74, 054507 (2006).

Tc (MeV)	HotQCD	Wuppertal-Budapest
Chiral Susceptibility	154 (9) (9)	151 (3) (3)
Polyakov loop Suscep.	192 (7) (4)	175 (2) (4)
S quark number suscep.	N/A	176 (3) (4)

➢ For different lattice groups, they got agreement on Tc using chiral susceptibility, Tc≈154 MeV.

Inconsistent results between two groups for Tc obtained from Polyakov loop susceptibility.

Xiaofeng Luo

How to make "Quark Soup"

S. Gupta, X. Luo, B. Mohanty, H. G. Ritter, N. Xu, Science 332 (2011) 1525.

Xiaofeng Luo

- → Experiment: Strongly interacting hot dense nuclear matter of deconfined quarks and gluons is formed in the high energy heavy-ion collisions at RHIC and LHC.
- → Theory: At μ_B=0 the phase transition from hadronic to QGP is crossover. Transition temperature using chiral condensates ~ 154 MeV, using Susceptibilities and Polyakov loop ~ 175 MeV.
- However, we know little about the phase structures of the hot dense nuclear matter at finite μ_{B.}

Need to study the QCD Phase Structure !

QCD Phase Diagram (Conjectured)

Very rich phase structure in the QCD phase diagram.

K. Fukushima and T. Hatsuda, Rept. Prog. Phys. <u>74</u>, 014001(2011); arXiv: 1005.4814

- 1. Is there a first order phase transition at large μ_B ?
- 2. Is there a QCD critical point ?
- 3. What's the T and μ_B dependence of the QGP properties ?
- 4. Can we see the QGP signals are turning off at low energies HIC ?

The QCD Critical Point

TYR TYR TAR THE

- Singularity of EoS: Diverges of the thermodynamics quantities, such as correlation length (ξ),
 Susceptibilities (χ), heat capacity (C_V).
 - Long wavelength fluctuations of order parameter.
 Critical Opalescence. Z(2) universality class same as liquid-gas phase phase transiton.

Challenges:

- 1. finite size/time. $\xi=2 \sim 3 \text{ fm}$
- 2. Non-CP physics background.
- 3. Signal isn't washed out after expansion.

Location of QCD Critical Point: Theory

DES:

Lattice QCD:

Lattice QCD:

1): Reweighting: Fodor&Katz,2004: $\mu^{E}_{B}/T^{E} \sim 2.2 \Rightarrow \sqrt{s_{NN}} \sim 9.5 \text{ GeV}$

2): Tylor Expansion: Gavai&Gupta 2013 $\mu^{E}_{B}/T^{E} \sim 1.7 \Rightarrow \sqrt{s_{NN}} \sim 14.5 \text{ GeV}$

DSE:

1): Y. X. Liu, et al., PRD90, 076006 (2014). $\mu^{E}_{B}/T^{E} \sim 2.88 \Rightarrow \sqrt{s_{NN}} \sim 8 \text{ GeV}$

2): C. S. Fischer et al., PRD90, 034022 (2014). $\mu^{E}_{B}/T^{E} \sim 4.4 \Rightarrow \sqrt{s_{NN}} \sim 6 \text{ GeV}$

$\sqrt{s_{NN}} = 6 \sim 14.5 \text{ GeV}, \ \mu^{E}_{B} = 266 \sim 496 \text{ MeV}$

Xiaofeng Luo

Experimental Facility for the Beam Energy Scan

Xiaofeng Luo

Fluctuations are sensitive to the thermodynamic properties of the system and can be used to probe the QCD phase transition.

1. Fluctuations signals the QCD Critical Point.

M. Stephanov, K. Rajagopal, E. Shuryak, Phys. Rev. Lett. 81, 4816 (1998). Cited:928 M. Stephanov, K. Rajagopal, E. Shuryak, Phys. Rev. D 60, 114028 (1999). Cited:708

Probe singularity of the equation of state: Divergence of the fluctuations.

2. Fluctuations signals the Quark Deconfinement.

S. Jeon and V. Koch, Phys. Rev. Lett. 83, 5435 (1999). Cited: 193. M. Asakawa, U. Heinz and B. Muller, Phys. Rev. Lett. 85, 2072 (2000). Cited:443

Proposed experimental observables:

- 1. Pion multiplicity fluctuations.
- 2. Mean p_T fluctuations.
- 3. Particle ratio fluctuations
- 4. Fluctuations of conserved quantities.

Fluctuations Measure: During last 20 years

Observable	Definition	Non-dynamical	Experiments
ω _x	$\sigma_x^2/\langle N \rangle$ Scaled variance	Beyond poissionian (>1) Other models without PT	WA98, NA49, PHENIX
Φp _T	$z_{pT} = (p_{Ti} - \langle p_{T} \rangle); Z_{pT} = \Sigma z_{pT}$ Sqrt($\langle Z_{pT}^2 \rangle / \langle N \rangle$) - Sqrt(z_{pT}^2)	= 0 by construction	NA49,PHENIX
\mathbf{v}_{dyn}	$ < N_x (N_x - 1) > / < N_x >^2 + < N_y (N_y - 1) > / < N_y >^2 - 2 < N_x N_y > / < N_x > < N_y > $	= 0 by construction	STAR
F _{pT}	$(\omega_{data} - \omega_{baseline}) / \omega_{baseline}$	Baseline : Mixed events	PHENIX
$\Sigma_{\rm pT}$	$X_{dyn}^{2} = \omega(data) - \omega(inclusive single particle)$ = sgn(X _{dyn} ²) Sqrt(X _{dyn} ²)/ <p<sub>T></p<sub>	= 0 by construction	CERES
<Δp _{T,i} Δp _{T,j} >	$\frac{1}{\sum_{k=1}^{n_{\text{ev}}} N_k^{\text{pairs}}} \cdot \sum_{k=1}^{n_{\text{ev}}} \sum_{i=1}^{N_k} \sum_{j=i+1}^{N_k} (p_{ti} - \overline{p_t})(p_{tj} - \overline{p_t}).$	= 0 by construction	STAR, CERES
$\sigma_{x,dyn} \\ \Delta \sigma_{pt}$	~ sign($\sigma^2(data)^-\sigma^2(mixed)$)Sqrt($ \sigma^2(data)^-\sigma^2(mixed) $)	Mixed events	STAR

Most of those observables are looking at dynamical fluctuations with second order moment and non-conserved quantities.

Xiaofeng Luo

1. Higher sensitivity to correlation length (ξ) and probe non-gaussian fluctuations near the Critical Point.

$$\left\langle \left(\delta N\right)^3\right\rangle_c \approx \xi^{4.5}, \quad \left\langle \left(\delta N\right)^4\right\rangle_c \approx \xi^7$$

M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009).
M. A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011).
M. Asakawa, S. Ejiri and M. Kitazawa, Phys. Rev. Lett. 103, 262301 (2009).

2. Direct connection to the susceptibility of the system.

$$\chi_q^{(n)} = \frac{1}{VT^3} \times C_{n,q} = \frac{\partial^n (p/T \wedge 4)}{\partial (\mu_q)^n}, q = B, Q, S$$

S. Ejiri et al, Phys.Lett. B 633 (2006) 275.
Cheng et al, PRD (2009) 074505. B. Friman et al., EPJC 71 (2011) 1694.
F. Karsch and K. Redlich, PLB 695, 136 (2011).
S. Gupta, et al., Science, 332, 1525(2012).
A. Bazavov et al., PRL109, 192302(12) // S. Borsanyi et al., PRL111, 062005(13) // P. Alba et al., arXiv:1403.4903

"Shape" of the fluctuations can be measured: non-Gaussian moments.

Susceptibility ratios \Leftrightarrow Cumulant Ratios (Cancel V dependence) $\frac{\chi_{q}}{\chi_{q}^{2}} = \kappa \sigma^{2} = \frac{C_{4,q}}{C_{2,q}} \qquad \qquad \frac{\chi_{q}}{\chi_{q}^{2}} = S \sigma = \frac{C_{3,q}}{C_{2,q}}, \qquad (q=B, Q, S)$

Xiaofeng Luo

First measure: Higher moments of net-proton distributions

STAR: PRL105, 022302 (2010).

Net-proton fluctuations can reflect the diverges of baryon number fluctuations at CP and can be used to search for the CP.

Y. Hatta, Misha Stephanov, PRL 91, 102003 (2003).

> There has no evidence for the existence of QCD critical point with μ_B <200 MeV.

Xiaofeng Luo

Hadron Resonance Model Calculation

Baryon number fluctuation from thermal model. Poisson statistics

 $\kappa\sigma^2 = 1, S\sigma = \tanh(\mu_B / T)$ F. Karsch et al, PLB695,136 (2011)

RHIC Beam Energy Scan-I (2010-2014)

√s (GeV)	Statistics(Millions) (0-80%)	Year	μ _Β (MeV)	T (MeV)	μ _Β /Τ
7.7	~4	2010	420	140	3.020
11.5	~12	2010	315	152	2.084
14.5	~ 20	2014	266	156	1.705
19.6	~36	2011	205	160	1.287
27	~70	2011	155	163	0.961
39	~130	2010	115	164	0.684
62.4	~67	2010	70	165	0.439
200	~350	2010	20	166	0.142

Study QCD Phase Structure

 $\mu_{B_{\,,}}\,T$: J. Cleymans et al., Phys. Rev. C 73, 034905 (2006).

- Onset of sQGP
- Phase boundary and critical point

STAR Detector System

Xiaofeng Luo

First Order Phase Transition ?

J. Steinheimer et al., arXiv:1402.7236 P. Konchakovski et al., arXiv:1404.276

Xiaofeng Luo

Methodology

- 1. Efficiency Correction. Binomial efficiency response
- 2. Initial Volume Fluctuations. centrality bin width correction.
- 3. Remove auto-correlation.

New centrality definition.

4. Statistical Error Estimation.

Delta theorem and Bootstrap

error $\propto O(\sigma^n / \varepsilon^{\alpha})$

STAR: **PRL112**, 32302(14); **113**,092301(14).

X. Luo, J. Phys.: Conf. Ser. 316 012003 (2011); JPG 39, 025008 (2012); JPG 40, 105104 (2013); PRC 91, 043907 (2015).

A. Bzdak and V. Koch, PRC91,027901(2015), PRC86, 044904(2012).

Results Published in 2014

Net-proton (0.4< p_T <0.8 GeV/c): All data show deviations below Poisson for $\kappa\sigma^2$ at all energies. Larger deviation at $\sqrt{s_{NN}} \sim 20$ GeV

Net-charge (0.4<pT<2 GeV/c) Need more statistics.

Poisson: κσ²=1

Net-proton: STAR: **PRL112**, 32302(2014) Net-charge: STAR: **PRL113**,092301(2014)

Acceptance Dependence Study

 Δy_{corr} : The correlation range in rapidity.

is determined by the momentum distribution of the particles at freezeout.

-- Diffusion + thermal Blurring effects.

Critical contribution to fluctuations of proton number strongly depends on acceptance in both p_T and rapidity.

It is important to explore the acceptance dependence of the fluctuation measures.

V. Koch, arXiv: 0810. 2520; B. Ling, M. Stephanov, arXiv: 1512. 09125. M. Asakawa and M. Kitazawa, arXiv:1512.05038; MK, NPA942, 65 (2015). M. Sakaida et al, PRC90 (2014) 6, 064911

Xiaofeng Luo

New Net-proton Analysis: Larger p_T Acceptance

TOF is used for Identify p/pbar in addition with TPC to extend the p_T coverage.

Efficiency for Proton and Anti-proton

Efficiency are nearly constant for p and pbar within two different p_T region. Efficiency correction and error estimation methods : X. Luo, PRC91, 034907 (2015).

Xiaofeng Luo

Efficiency Correlation and Error Estimation

We provide a unified description of efficiency correction and error estimation for higher moments analysis in heavy-ion collisions.

$$\begin{split} F_{r_1,r_2}(N_p,N_{\bar{p}}) &= F_{r_1,r_2}(N_{p_1}+N_{p_2},N_{\bar{p}_1}+N_{\bar{p}_2}) \\ &= \sum_{i_1=0}^{r_1}\sum_{i_2=0}^{r_2}s_1(r_1,i_1)s_1(r_2,i_2) < (N_{p_1}+N_{p_2})^{i_1}(N_{\bar{p}_1}+N_{\bar{p}_2})^{i_2} > \\ &= \sum_{i_1=0}^{r_1}\sum_{i_2=0}^{r_2}s_1(r_1,i_1)s_1(r_2,i_2) < \sum_{s=0}^{i_1}\binom{i_1}{s}N_{p_1}^{i_1-s}N_{p_2}^s\sum_{t=0}^{i_2}\binom{i_2}{t}N_{\bar{p}_1}^{i_2-t}N_{\bar{p}_2}^t > \\ &= \sum_{i_1=0}^{r_1}\sum_{i_2=0}^{r_2}\sum_{s=0}^{i_1}\sum_{t=0}^{i_2}s_1(r_1,i_1)s_1(r_2,i_2)\binom{i_1}{s}\binom{i_2}{t} < N_{p_1}^{i_1-s}N_{p_2}^sN_{\bar{p}_1}^{i_2-t}N_{\bar{p}_2}^t > \\ &= \sum_{i_1=0}^{r_1}\sum_{i_2=0}^{r_2}\sum_{s=0}^{i_1}\sum_{t=0}^{i_2}\sum_{u=0}^{i_2-t}\sum_{v=0}^{s}\sum_{j=0}^{i_2-t}\sum_{k=0}^{t}s_1(r_1,i_1)s_1(r_2,i_2)\binom{i_1}{s}\binom{i_2}{t} < N_{p_1}^{i_1-s}N_{p_2}^sN_{\bar{p}_1}^{i_2-t}N_{\bar{p}_2}^t > \\ &= \sum_{i_1=0}^{r_1}\sum_{i_2=0}^{r_2}\sum_{s=0}^{i_1}\sum_{u=0}^{i_2}\sum_{u=0}^{s}\sum_{v=0}^{s}\sum_{j=0}^{s}\sum_{k=0}^{t}s_1(r_1,i_1)s_1(r_2,i_2)\binom{i_1}{s}\binom{i_2}{t} \\ &\times s_2(i_1-s,u)s_2(s,v)s_2(i_2-t,j)s_2(t,k) \times F_{u,v,j,k}(N_{p_1},N_{p_2},N_{\bar{p}_1},N_{\bar{p}_2}) \end{split}$$

Assume Binomial response for efficiency

$$F_{u,v,j,k}(N_{p_1}, N_{p_2}, N_{\bar{p}_1}, N_{\bar{p}_2}) = \frac{f_{u,v,j,k}(n_{p_1}, n_{p_2}, n_{\bar{p}_1}, n_{\bar{p}_2})}{(\varepsilon_{p_1})^u (\varepsilon_{p_2})^v (\varepsilon_{\bar{p}_1})^j (\varepsilon_{\bar{p}_2})^k}$$

X. Luo, PRC91, 043907 (2015).

Also see:

A. Bzdak and V. Koch, PRC91,027901(2015), PRC86, 044904(2012).

- 1. The eff. corrected results match the model inputs very well, which indicate the efficiency correction method works well.
- 2. The error estimation for eff. corrected results are based on the Delta theorem.

Raw Net-proton Multiplicity Distributions

Cumulants: C1~C4

Xiaofeng Luo

Cumulants vs. Baselines

- The higher the order of cumulants the larger deviations from Poisson expectations for net-proton and proton.
- > The binomial distribution (BD) better described the data than Poisson. But large deviations seen in C_3 and C_{4} .

Forth Order Fluctuations: Net-proton

$$\kappa \sigma^2 = C_4 / C_2$$

Non-monotonic trend is observed for the 0-5% most central Au+Au collisions. Dip structure is observed around 19.6 GeV.

Separating and flipping for the results of 0-5% and 5-10% centrality are observed at 14.5 and 19.6 GeV. (Oscillation Pattern observed !)

 UrQMD (no CP) results show suppression at low energies.
 Consistent with the effects of baryon number conservation.

Systematic errors: 1) Uncertainties on efficiency, 2) PID, 3) Track Cuts.

Sign of Kurtosis : Model and Theoretical Calculations

Xiaofeng Luo

Oscillation Pattern: Signature of Critical Region ?

"Oscillation pattern" around baseline for Kurtosis may indicate a signature of critical region.

κσ²	0-5%	5-10%
14.5 GeV	1+Pos.	1+Neg.
19.6 GeV	1+Neg.	1+Pos.

Propose to scan 16.5 GeV (μ_B =238 MeV) or even finer step between 14.5 and 19.6 GeV, expect to see bigger dip and no separation for the results of the 0-5% and 5-10%.

Rapidity Window Dependence

Significant rapidity window dependence are observed. Large acceptance is crucial for the fluctuation measurement.

Xiaofeng Luo

Moments of Net-Charge and Net-Kaon Distributions

> Within current errors, Net-Kaon and Net-Charge $\kappa\sigma^2$ are consistent with unity.

More statistics are needed to make a conclusion.

UrQMD (no CP), show no energy dependent.

$$error(\kappa\sigma^2) \propto \frac{1}{\sqrt{N}} \frac{\sigma^2}{\varepsilon^2}$$

 σ : Measured width of distributions.

ε: Efficiency.

In STAR, with the same # of events: error(Net-Q) > error(Net-K) > error (Net-P)

STAR Upgrades and BES Phase-II (2019-2020)

iTPC proposal: <u>http://drupal.star.bnl.gov/STAR/starnotes/public/sn0619</u> BES-II whitepaper: <u>http://drupal.star.bnl.gov/STAR/starnotes/public/sn0598</u> Larger rapidity acceptance crucial for further critical point search with net-protons

- Electron cooling upgrade will provide increased luminosity ~ 3-10 times.
- > Inner TPC(iTPC) upgrade : $|\eta| < 1$ to $|\eta| < 1.5$. Better dE/dx resolution.
- Forward Event Plane Detector (EPD): Centrality and Event Plane Determination.
 1.8 < |η| < 4.5

Xiaofeng Luo

Summary

- ➢ We present centrality and energy dependence of cumulants and cumulant ratios for proton, anti-proton and net-proton at mid-rapidity (|y|<0.5) and p_T coverage up to 2 GeV/c for Au+Au collisions at 7.7,11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV.
- Non-monotonic behavior is observed at most central collisions. Oscillation pattern are observed at 0-5% and 5-10% for 14.5 and 19.6 GeV, which could be indication of critical region. Propose to scan 16.5 GeV, could see bigger dip and no oscillation.
- Acceptance (p_T and y) studies indicate large acceptance is crucial for fluctuation measurements.

Discovery Potential at High Baryon Density

Xiaofeng Luo

It is time to discover the QCD Critical Point !

Welcome to the STAR !

Xiaofeng Luo