燃料電池・蓄電池の 電気化学界面シミュレーションのこれまで の発展とこれから 国立研究開発法人 産業技術総合研究所

機能材料コンピュテーショナルデザイン研究センター

大谷 実

- ・バックグラウンド・シミュレーション技術の発展
- ・電気化学界面シミュレーション事例
 (スーパーキャパシター、燃料電池)
- ・現状と今後の展望

Target devices

Energy generation

Energy harvesting

Electrochemical devices

Battery

Manganese dry cell

Lead battery

NiCd, NiH secondary battery Fuel cell

Lithium secondary battery

<u>Capacitor</u>

Electrolytic condenser Double layer condenser Supercapacitor

Photovoltaic cell

c-Si, a-Si solar cell Dye sensitized solar cell photoelectrochemical hydrogen production

pH meter

ion selective concentration meter glucose, etc. (using enzyme) gas (oxygen, etc.) <u>Electroplating</u> <u>Cathodic protection</u> $Fe \rightarrow Fe_2O_3$ <u>Electrolysis</u> Aluminum, Copper, etc. Water, salt, etc. Organic chemicals tetraethyl lead

Challenges in modelling an electrochemical reaction

時間スケール

4 Challenges in modelling an electrochemical reaction for DFT-MD

電気化学界面シミュレーションの課題

1.Strong electric field in Helmholtz layer

Effective Screening Medium method

Phys. Rev. B 73, 115407 (2006)

2.Screening in diffuse layer

Smooth ESM method

Phys. Rev. B 88, 155427 (2013)

3.Origin of electrostatic potential

4.Bias potential control

Constant-µ method

Phys. Rev. Lett. 109, 266101 (2012)

ESMとは?

従来のDFT計算のプログラムを用いて電池・キャパシタ構造の 電子状態計算を可能になる

従来の方法では周期境界を課すので、外側に電極を置くような計算はできなかった

ESM法を用いたシミュレーションの様子

Limitation of the original conventional DFT-MD

A. Lozovoi et al., JCP 115, 1661 (2001)

電子系のグランドカノニカルアンサンブル法

If we can introduce a fictitious motion for amount of charge n_e , we can realize NVTµ_e MD simulation

仮想的なLagrangianを導入

$$L_{\mu} = \frac{1}{2} \sum_{i}^{N} m_{i} \dot{\boldsymbol{r}}_{i}^{2} - E(\{\boldsymbol{r}\}; \psi) + \frac{1}{2} M \dot{n}^{2} - (-\mu_{\text{ext}} n)$$

ここで、Mは電荷量の仮想的な重さを表す。Euler-Lagrange方程式は

$$\begin{cases} m_i \ddot{\boldsymbol{r}}_i = -\frac{\partial E(\{\boldsymbol{r}_i\}; \psi)}{\partial \boldsymbol{r}_i} \\ M\ddot{\boldsymbol{n}} = -\left(\frac{\partial E(\{\boldsymbol{r}_i\}; \psi)}{\partial \boldsymbol{n}} - \mu_{\text{ext}}\right) \end{cases}$$
瞬間的な電子系の電位 μ_{in}

となる。

N. Bonnet et al., Phys. Rev. Lett. 109, 266101 (2012)

Test calculation (Pt-H₂O interface)

Experimental technique on electrochemical devices

in situ spectroscopy

- X-ray emission/absorption spectroscopy (XES/XAS)
- Raman spectroscopy
- Infrared spectroscopy (IR)
- Auger electron spectroscopy (AES)
- etc...

I-V characteristic

- Cyclic voltammetry (CV)
- Linear sweep voltammetry (LSV)
- Charge/discharge characteristic
- Impedance spectroscopy
- etc...

動作環境下における第一原理 シミュレーションが可能に

XAS analysis of carbon aerogel super capacitor

Advanced Materials 27, 1512 (2015)

Newly developed XAS technique reveals the bias induced changes of the electronic structure of the electrode.

XAS analysis of carbon aerogel super capacitor

Advanced Materials 27, 1512 (2015)

XAS spectral calculation with quantum espresso package http://www.quantum-espresso.org

CI-は印可電圧による表面状態変化を 誘発しやすい

Experimental technique on electrochemical devices

in situ spectroscopy

- X-ray emission/absorption spectroscopy (XES/XAS)
- Raman spectroscopy
- Infrared spectroscopy (IR)
- Auger electron spectroscopy (AES)
- etc...

I-V characteristic

- Cyclic voltammetry (CV)
- Linear sweep voltammetry (LSV)
- Charge/discharge characteristic
- Impedance spectroscopy
- etc...

動作環境下における第一原理 シミュレーションが可能に

面方位で異なる反応

Pt(<i>hkl</i>)	mechanism rds
Pt(110)	Tafel–Volmer
Pt(100)	
	Heyrovsky–Volmer
Pt(111)	Tafel–Volmer, Heyrovsky–Volmer
	Markovic et.al., J. Phys. Chem. B 101, 5405 (1997

Kinetic analysis

Energy profile of an electrochemical reaction

 α : symmetry factor

E : electrode potential

I-V characteristic

✓ What do we need to simulate the I-V characteristic:

- Nernst equation First principles molecular - $E_{\rm eq} = \underbrace{E_0}_{\rm H} + \frac{RT}{nF} \log\left(\frac{c_{\rm ox}}{c_{\rm red}}\right)$ dynamics simulation
- Butler-Volmer equation

$$j = j_0 \left\{ \exp\left(\frac{(1-\alpha)(E-E_{eq})}{RT}\right) - \exp\left(-\frac{\alpha(E-E_{eq})}{RT}\right) \right\} \quad j_0 = k \exp\left(-\frac{E_a}{RT}\right)$$

Diffusion equation
$$\frac{k_B T}{h} \sim 245 \text{ cm}^{-1}$$

Diffusion equation

 $\frac{\partial c}{\partial x} = -D \frac{\partial^2 c}{\partial x^2}$

from Eyring theory

from experiment, classical MD, FPMD,...

Free energy profile

 $(1) Pt + H_2O \leftrightarrows PtOH + H^+ + e^-$

Free energy & charge

OH distance (Å) $E_{\rm a}^{\rm f} = 0.14 \text{ eV}$ $E_{\rm a}^{\rm b} = 0.12 \text{ eV}$ $\mu_{\rm ext}$ =-7.08eV

CV curve of Pt(111)

 ESM+BM calculation can reproduce the CV curve

T. Ikeshoji, et al., in preparation

Collaborators

Method development

- Osamu Sugino (ISSP)
- Nicephore Bonnet
- Tetsuya Morishita (AIST)
- Ikutaro Hamada (NIMS)
- Hu Chunping (AIST)

Fuel cell

- Tamio Ikeshoji (FC-Cubic)
- Yoshitada Morikawa (Osaka U.)

Lithium ion battery

- Tsukuru Ohwaki (NISSAN ARC)
- Taisuke Ozaki (U. Tokyo)

Super capacitor

- Tadashi Ogitsu (LLNL)
- Brandon Wood (LLNL)
- David Prendergast (LBNL)

Computer resources

- KEI-computer
- ISSP (U Tokyo)
- ITC (U Tokyo)