## 混合価数スズ酸化物の結晶構造予測と 光機能材料としての可能性

梅澤面人

物質・材料研究機構 環境再生材料ユニット



Nature of defects and dopants

# H<sub>2</sub> evolution from methanol solution on semiconductor photocatalysts

Vacuum level



# H<sub>2</sub> evolution from methanol solution on semiconductor photocatalysts



Ideal semiconductor



schlastic offers a whole same ETO costed a

www.techinstro.com

Crystal structure prediction from evolutionary algorithm



complex crystal structures. *Comp. Phys. Comm.* **181**, 1623-1632. Oganov A.R., Lyakhov A.O., Valle M. (2011). How evolutionary crystal structure prediction works - and why. *Acc. Chem. Res.* **44**, 227-237.

## **Computational details**

#### **Structure Prediction**

- Global optimization: Evolutionary Algorithm (USPEX)
- Local optimization: First Principles Calculation (VASP)
- Functional: optB86b vdW-DF (van der Waals correction)
- Cutoff Energy: 400 eV

#### □Post Processing

- Structure Refinement: First Principles Calculation (VASP)
- Functional: optB86b vdW-DF (van der Waals correction)
- Cutoff Energy: 800 eV
- Electronic Structure: First Principles Calculation (VASP)
- Functional: HSE06 (hybrid functional)+optB86b (van der Waals correction)
- Cutoff Energy: 600 eV

## Novel crystal structures of Sn<sub>x</sub>O<sub>y</sub>

Searching conditions: Atmosphere Pressure and 0 K.



R is the ratio of  $[Sn^{2+}]/([Sn^{2+}]+[Sn^{4+}])$ 

J. Wang, N. Umezawa\*, and H. Hosono, Adv. Energy Mater. 2015, DOI: 10.1002/aenm.201501190.

### Stability of Sn<sub>x</sub>O<sub>y</sub> structures



J. Wang, N. Umezawa\*, and H. Hosono, Adv. Energy Mater. 2015, DOI: 10.1002/aenm.201501190.

## Stability of Sn<sub>x</sub>O<sub>y</sub> structures

#### **Thermodynamic stability**

#### **Dynamic stability**



Convex hull diagram for Sn<sub>x</sub>O<sub>y</sub> system



Phonon bands for  $Sn_xO_y$  system

No negative frequency

## Linear dependence of the band gap on the interlayer distance



J. Wang, N. Umezawa\*, and H. Hosono, Adv. Energy Mater. 2015, DOI: 10.1002/aenm.201501190. 11

#### Bader charge analysis to identify Sn<sup>2+</sup> and Sn<sup>4+</sup>





### Density of states of Sn<sub>3</sub>O<sub>4</sub>



Sn<sup>2+</sup> is responsible for the band edges !

### Band structure of Sn<sub>5</sub>O<sub>6</sub>



J. Wang, N. Umezawa\*, and H. Hosono, Adv. Energy Mater. 2015, DOI: 10.1002/aenm.201501190. 14



## Linear dependence of the band gap on the interlayer distance



J. Wang, N. Umezawa\*, and H. Hosono, Adv. Energy Mater. 2015, DOI: 10.1002/aenm.201501190. <sup>16</sup>

## Band alignment of $Sn_xO_y$ with respect to the reduction potential of water



J. Wang, N. Umezawa\*, and H. Hosono, Adv. Energy Mater. 2015, DOI: 10.1002/aenm.201501190. 17

## H<sub>2</sub> evolution from methanol solution under visible light irradiation



#### Firstly identified material for H<sub>2</sub> evolution !

### Visible-light responsive photocatalysts

| Photocatalysts                                                                             | Activity (µmol/h)                 | A.Q.E. / %<br>(around 420nm)       | Research Group    |
|--------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|-------------------|
| CaFe <sub>2</sub> O <sub>4</sub> /MgFe <sub>2</sub> O <sub>4</sub>                         | 25 (0.3g cat.)                    | 10.1                               | Lee J.            |
| WO <sub>3</sub> /W/PbBi <sub>2</sub> Nb <sub>1.9</sub> Ti <sub>0.1</sub><br>O <sub>9</sub> | 15 (0.3g cat.)                    | 6.06                               | Lee J.            |
| Rh doped SrTiO <sub>3</sub>                                                                | 90 (0.3g cat.)                    | 5.2                                | Kudo A.           |
| Cr doped SrTiO <sub>3</sub>                                                                | 21 (0.2g cat.)                    | 0.86                               | Our Group         |
|                                                                                            |                                   |                                    |                   |
| Cu doped BiTaO <sub>4</sub>                                                                | 88 (0.1g cat.)                    |                                    | Zhang H., et. al. |
| Sb, Cr codoped $SrTiO_3$                                                                   | 78 (0.5g cat.)                    |                                    | Kudo A.           |
| Sn <sup>2+</sup> doped KTiNbO <sub>5</sub>                                                 | 54 (0.2g cat.)                    |                                    | Kudo A.           |
| Ret.: 2                                                                                    | X. Chen, et. al, <i>Chem. Rev</i> | , <b>2010</b> , <i>110</i> , 6503. |                   |
| La,Cr codoped SrTiO <sub>3</sub>                                                           | 78 (0.3g cat)                     | 4.8                                | Our Group         |
| Sn <sub>3</sub> O <sub>4</sub>                                                             | 6.93 (0.3g cat)                   |                                    | Our Group         |



Highly active earth abundant non-toxic photocatalyst !

## Potential application to photoabsorber materials for solar cells



Calculated absorption coefficients of  $\alpha$ -Sn<sub>3</sub>O<sub>4</sub>, Sn<sub>5</sub>O<sub>6</sub>, Sn<sub>7</sub>O<sub>8</sub>, Sn<sub>9</sub>O<sub>10</sub> and  $\beta$ -SnO, plotted in comparison with those of silicon,  $\alpha$ -SnO and SnO<sub>2</sub> over the visible spectrum.

A proposed multilayer photoabsorber using predicted structures from the present study.

### Conclusion

- **Novel crystal structures** for mixed-valence  $Sn_xO_y$  have been discovered by evolutional algorithm combined with density functional calculation.
- The band gap of  $Sn_xO_y$  linearly depends on the interlayer distance as a result of he interactions of  $Sn^{2+}-Sn^{2+}$  at the layer surfaces.
- Our study suggests a possibility that materials properties of the newly found van der Waals  $Sn_xO_y$  can be controlled by adjusting their layer compositions.

## Acknowledgements



Maidhily Manikandan, Toyokazu Tanabe, Peng Li, Shigenori Ueda, Gubbala V. Ramesh, Rajesh Kodiyath, Toru Hara, Arivuoli Dakshanamoorthy, Shinsuke Ishihara, Katsuhiko Ariga, Jinhua Ye, and Hideki Abe,



Artem R. Oganov and Qiang Zhu, The State University of New York at Stony Brook, USA.



Qingfeng Zeng, Northwestern Polytechnical University, China.

JW is supported by the Japan Society for the Promotion of Science (JSPS). This work is also partly supported by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) program and by the World Premier International Research Center Initiative on Materials Nanoarchitectonics (MANA), MEXT. HH acknowledges the support by the MEXT Element Strategy Initiative to form core research centers.





