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Definitions

Let (M, g) be a Lorentzian manifold,

where the metric g is semi-definite.

TxM is the space of tangent vectors at x

ξ ∈ TxM is light-like if g(ξ, ξ) = 0, ξ 6= 0.

ξ ∈ TxM is time-like if g(ξ, ξ) < 0.

A curve µ(s) is time-like if µ̇(s) is time-like.

Example: Minkowski space R
1+3.

Coordinates (x0, x1, x2, x3) ∈ R
1+3,

ds2 = −(dx0)2+(dx1)2+(dx2)2+(dx3)2



The proper time is the elapsed time between two events as
measured by a clock that passes through both events.

The proper time (Lorentzian length) along a causal curve µ([a, b]) is

T (µ) =

∫ b

a

√
−g(µ̇(s), µ̇(s)) ds.

Causal geodesics maximize locally the Lorentzian length. Geodesics
satisfy equation ∇µ̇(s)µ̇(s) = 0.
We denote by γx ,ξ(t) the geodesic with the initial point (x , ξ).



When distances of boundary points
determine the metric?

Riemannian manifolds:
Michel (1981),
Gromov (1983),
Croke (1990), Otal (1990),
L.- Sharafutdinov-Uhlmann (2003),
Pestov-Uhlmann (2005),
Stefanov-Uhlmann (2005),
Burago-Ivanov (2010),
Salo-Paternain-Uhlmann (2013)

Lorentzian manifolds:
Andersson-Dahl-Howard: Boundary and lens rigidity of Lorentzian
surfaces. (TAMS 1996)

Figures: IMA



Definition: A submanifold Σ ⊂ M is time-like convex near

a time-like vector (x0, ξ0) ∈ TΣ if:

For all (x , ξ) in a small neighborhood of (x0, ξ0) in TΣ and

r ∈ (0, r0), the geodesic γ(t) = γx ,ξ+rν(t) satisfies γ(t0) ∈ Σ for

some t0 > 0.



Theorem (M.L.-Oksanen-Yang)

Let (M1, g1) and (M2, g2) be Lorentzian manifolds, Uj ⊂ Mj be

simply convex open sets, and Σj ⊂ Uj be time-like submanifolds

that are time-like convex near (xj , ξj) ∈ TΣj . Suppose that there is

a diffeomorphism Φ : Σ1 → Σ2, Φ∗(x1, ξ1) = (x2, ξ2) and the

Lorentzian distance functions satisfy

d1(x , y) = d2(Φ(x),Φ(y)), for all x, y ∈ Σ1.

Then the derivatives ∂αg1 at x1 and ∂αg2 at x2 are the same.

When (M1, g1) is real-analytic, we can try to use analytic
continuation to reconstruct it.



A function F : M → R is a scalar curvature invariant if

F (x) = f (g(x),R(x),∇R(x), . . . ,∇kR(x)), k ∈ N,

where f is a smooth function, g is the metric tensor, R is the
curvature tensor, and ∇ is the covariant differentiation.

Example: the Kretschmann scalar is RabcdRabcd .

Definition
(M, g) is geodesically complete modulo scalar curvature
singularities if every maximal geodesic γ : (ℓ−, ℓ+) → M satisfies
ℓ± = ±∞ or there is a scalar curvature invariant F such that
F (γ(t)) is unbounded as t → ℓ±.



Theorem (M.L.-Oksanen-Yang)

Let (M1, g1) and (M2, g2) be two smooth Lorentzian manifolds

satisfying the assumptions of Theorem 1. Assume that (M1, g1)
and (M2, g2) are connected, geodesically complete modulo scalar

curvature singularities and real-analytic. Then the universal

Lorentzian covering spaces of (M1, g1) and (M2, g2) are isometric.



Schwarzschild black hole

The non-extended Schwarzschild black hole with Schwarzschild
radius Rs in standard coordinates

(t, r , θ, φ) ∈ R× R+ × (−π/2, π/2) × (−π, π)

has the metric

g = −

(
1 −

Rs

r

)
dt2 +

(
1 −

Rs

r

)−1

dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
.
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Inverse problem for passive measurements

Can one determine the metric when we observe wavefronts
produced by point sources? - Yes in Riem. geometry (L.-Saksala)
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Inverse problem for passive measurements

Can one determine the metric when we observe wavefronts
produced by point sources? - Yes in Riem. geometry (L.-Saksala)



Inverse problems in space-time: Passive

measurements

Can we determine structure of the space-time when we see light
coming from many point sources that vary in time?



Variable stars in Hertzsprung-Russell diagram on star types.
Areas with variable stars are marked by white.



Definitions

Let (M, g) be a Lorentzian manifold.

LqM = {ξ ∈ TqM \ 0; g(ξ, ξ) = 0},

L+q M ⊂ LqM is the future light cone,

J+(q) = {x ∈ M; x is in causal future of q},

J−(q) = {x ∈ M; x is in causal past of q},

γx ,ξ(t) is a geodesic with the initial point (x , ξ),

L+
q = {γq,ξ(r) ∈ M; ξ ∈ L+q M, r ≥ 0}.

(M, g) is globally hyperbolic if

there are no closed causal curves and the set

J−(p1) ∩ J+(p2) is compact for all p1, p2 ∈ M.

Then M can be represented as M = R× N.



More definitions

Let A ⊂ R
m be open and µa : (−1, 1) → M, a ∈ A be a family of

time-like geodesics such that V =
⋃

a∈A µa(−1, 1) is open.
We consider observations in V . Let p−, p+ ∈ µa0

.

Let U ⊂ J−(p+) \ J−(p−) be an open, relatively compact set.

The observation time function Fq : A → R for a point q ∈ U is

Fq(a) = inf{s ∈ R ; there is a future-directed light-like

geodesic from q to µa(s)}

U

q

V µa

V

q



Theorem (Kurylev-L.-Uhlmann)

Let (M, g) be a globally hyperbolic Lorentzian manifold of

dimension n ≥ 3. Assume that µa(−1, 1) ⊂ M, a ∈ A ⊂ R
m are

time-like geodesics, V = ∪a∈A µa is open, and p−, p+ ∈ µa0
.

Let U ⊂ J−(p+) \ J−(p−) be a relatively compact open set.

Then (V , g |V ) and the collection of the observation time functions,

FU =

{
Fq : A → R

∣∣∣∣ q ∈ U

}
,

determine the set U, up to a change of coordinates, and the

conformal class of the metric g in U.

U

q

V

V

q



Reconstruction of the topological structure of U

U

q

V

q1

q2

x1

µa

Assume that q1, q2 ∈ U are

such that Fq1
= Fq2

.

Then all light-like geodesics from q1

to V go through q2.

Let x1 = µa(Fq1
(a)).



Reconstruction of the topological structure of U

U

q

V

q1

q2

x1

µa

z2

z1

Assume that q1, q2 ∈ U are

such that Fq1
= Fq2

.

Then all light-like geodesics from q1

to V go through q2.

Let x1 = µa(Fq1
(a)).

Using a short cut argument we see that

there is a causal curve from q1 to x1

that is not a geodesic.



Reconstruction of the topological structure of U

U

q

V

q1

q2

x1

µa

z2

z1

Assume that q1, q2 ∈ U are

such that Fq1
= Fq2

.

Then all light-like geodesics from q1

to V go through q2.

Let x1 = µa(Fq1
(a)).

Using a short cut argument we see that

there is a causal curve from q1 to x1

that is not a geodesic.

This implies that q1 can be

observed on µa before x1.

The map F : q 7→ Fq is continuous

and one-to-one.

As U is compact, the map

F : U → F(U) is a homeomorphism.



Outline:

◮ Lorentzian manifolds and inverse travel time problems

◮ Passive measurements with point sources

◮ Inverse problem for non-linear wave equation

“Can we image a wave using other waves?”

◮ Einstein-scalar field equations



Next we consider inverse problems with active measurements.

We will consider inverse problems for non-linear wave equations, e.g.

∂2

∂t2
u(t, y)− c(t, y)2∆u(t, y) + a(t, y)u(t, y)2 = f (t, y).

(Loading talkmovie2.mp4)

We will show that:

-Non-linearity helps to solve

the inverse problem,

-“Scattering” from

the interacting

wave packets

determines the

structure of the spacetime.


talkmovie2.mp4
Media File (video/mp4)



Some results for hyperbolic inverse problems for linear equations:

◮ Belishev-Kurylev 1992 and Tataru 1995: Reconstruction of a
Riemannian manifold with time-indepedent metric.
The used unique continuation fails for non-real-analytic
time-depending coefficients (Alinhac 1983).

◮ Eskin 2008: Wave equation with time-depending
(real-analytic) lower order terms.

◮ Helin-L.-Oksanen 2012: Combining several measurements for
together for the wave equation.



Non-linear wave equation in space-time

Let M = R× N, dim(M) = 4. Consider the equation

�gu(x) + a(x) u(x)2 = f (x) on M1 = (−∞,T )× N,

u(x) = 0 for x = (x0, x1, x2, x3) ∈ (−∞, 0)× N,

where

�gu =

3∑

p,q=0

|det (g(x))|−
1

2

∂

∂xp

(
|det (g(x))|

1

2 gpq(x)
∂

∂xq
u(x)

)

and a(x) is a non-vanishing C∞-smooth function.

Alternative model:

∂2

∂t2
u(t, y)− c(t, y)2∆u(t, y) + a(t, y)u(t, y)2 = f (t, y), x = (t, y).



Inverse problem for non-linear wave equation

Consider the equation

�gu(x) + a(x) u(x)2 = f (x) on M1 = (−∞,T )× N,

u(x) = 0 for x ∈ (−∞, 0)× N,

where the source f ∈ C 6
0
(V ) is supported in an open set V ⊂ M1.

In a neighborhood W ⊂ C 6
0
(V ) of the zero-function we define the

measurement operator (source-to-solution operator),

LV : f 7→ u|V , f ∈ W ⊂ C 6

0 (V ).



Theorem (Kurylev-L.-Uhlmann)

Let (M, g) be a globally hyperbolic Lorentzian manifold of

dimension (1 + 3). Let µ be a time-like path containing p− and

p+, V ⊂ M be a neighborhood of µ, and a(x) be a nowhere

vanishing function. Consider the non-linear wave equation

�gu(x) + a(x) u(x)2 = f (x) on M1 = (−∞,T )× N,

u = 0 in (−∞, 0)× N,

where supp(f ) ⊂ V . Then (V , g |V ) and the measurement operator

LV : f 7→ u|V determine the set J+(p−) ∩ J−(p+) ⊂ M, up to a

change of coordinates, and the conformal class of g in the set

J+(p−) ∩ J−(p+).



Idea of the proof: Non-linear geometrical optics.

The non-linearity helps in solving the inverse problem.

Let u = εw1 + ε2w2 + ε3w3 + ε4w4 + Eε satisfy

�gu + au2 = f , on M1 = (−∞,T )× N,

u|(−∞,0)×N = 0

with f = εf1, ε > 0.
When Q = �−1

g , we have

w1 = Qf1,

w2 = −Q(a w1 w1),

w3 = 2Q(a w1 Q(a w1 w1)),

w4 = −Q(a Q(a w1 w1)Q(a w1 w1))

−4Q(a w1 Q(a w1 Q(a w1 w1))),

‖Eε‖ ≤ Cε5.



Interaction of waves in Minkowski space R
4

Let x j , j = 1, 2, 3, 4 be coordinates such that

Kj = {x j = 0}, j = 1, 2, 3, 4,

are light-like. We consider plane waves

uj (x) = v · (x j )m+, (s)m+ = |s|mH(s), v ∈ R, j = 1, 2, 3, 4.

s



The interaction of the waves uj(x) produce new sources on

K12 = K1 ∩ K2,

K123 = K1 ∩ K2 ∩ K3 = line,

K1234 = K1 ∩ K2 ∩ K3 ∩ K3 = {q} = one point.

x0

x1

x2



Interaction of two waves

If we consider sources f~ε(x) = ε1f1(x) + ε2f2(x), ~ε = (ε1, ε2), and
the corresponding solution u~ε of the wave equation, we have

W2(x) =
∂

∂ε1

∂

∂ε2

u~ε(x)

∣∣∣∣
~ε=0

= �
−1

g (a u1 · u2),

where uj = �−1
g fj .

All light-like co-vectors in the normal bundle of K1 ∩ K2 are in
N∗K1 ∪ N∗K2.
Thus no interesting singularities are produced by the interaction of
two waves. (Greenleaf-Uhlmann ’93)



Interaction of three waves

Consider sources

f~ε(x) =
3∑

j=1

εj fj(x), ~ε = (ε1, ε2, ε3),

and let u~ε be the solution with source f~ε.
We have

W3 = ∂ε1
∂ε2

∂ε3
u~ε

∣∣
~ε=0

= �
−1

g (a u1 ·�
−1

g (au2 · u3)) + . . .

The interaction of the three waves happens on the line
K123 = K1 ∩ K2 ∩ K2 and produce new singularities.

Similar results in R
1+2: Rauch-Reed ’82 and Melrose-Ritter ’85.

Examples with caustics: Joshi-Sa Barreto ’98, Zworski ’94.



Interaction of waves:

The non-linearity helps in solving the inverse problem.
Artificial sources can be created by interaction of waves using the
non-linearity of the wave equation.

The interaction of 3 waves creates a point source in space that
seems to move at a higher speed than light, that is, it appears like
a tachyonic point source, and produces a new “shock wave” type
singularity.



(Loading talkmovie1.mp4)

Interaction of three waves.


talkmovie1.mp4
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Interaction of four waves

Consider sources f~ε(x) =
∑

4

j=1
εj fj(x), ~ε = (ε1, ε2, ε3, ε4), the

corresponding solution u~ε, and

W4 = ∂ε1
∂ε2

∂ε3
∂ε4

u~ε(x)
∣∣
~ε=0

.

Since K1234 = {q}. Thus, when the four waves intersect, an
artificial point source appears.



Interaction of four waves.

The 3-interaction produces conic waves (only one is shown below).

(Loading talkmovie2.mp4)

The 4-interaction produces

a spherical wave from the point q

that determines the

observation times Fq(a).

q


talkmovie2.mp4
Media File (video/mp4)
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Figures: Anderson institute and Greenleaf-K.-L.-U.



Active measurements: two alternative events.

t

x

t

x

(∂2

t − ∂2

x )u(t, x) = 0, (∂2

t − ∂2

x )u(t, x) = f (t, x),

u(0, x) = 0, ∂tu(0, x) = 0 u(0, x) = 0, ∂tu(0, x) = 0

In active measurements we consider a source that is either "on" or
"off". Thus the physical model has to include free parameters that
we can control.
To have a model where the total energy of the system is conserved,
we need a model for the device that produces the source.



Example: seismic imaging with explosions

A model for the acoustic wave u(x , t) and the pressure p(x , t) in a
source explosion, and the detonator h(x , t) is

(∂2

t − c(x)2∆)u(x , t) = p(x , t),

Equations for p(x , t) and h(x , t) . . .

To build a model where the total energy of the system is conserved
we need to model how the chemical energy of the explosive
transforms to kinetic energy.



Einstein equations

The Einstein equation for the (−,+,+,+)-type Lorentzian metric
gjk of the space time is

Einjk(g) = Tjk ,

where

Einjk(g) = Ricjk(g)−
1

2
(gpq Ricpq(g))gjk .

In vacuum, T = 0. In wave map coordinates, the Einstein equation
yields a quasilinear hyperbolic equation and a conservation law,

gpq(x)
∂2

∂xp∂xq
gjk(x) + Bjk(g(x), ∂g(x)) = Tjk(x),

∇p(g
pjTjk) = 0.



One can not do measurements in vacuum, so matter fields need to
be added. We can consider the coupled Einstein and scalar field
equations with sources,

Ein(g) = T , T = T(φ, g) + F1, on (−∞, t0)× N,

�gφℓ − m2φℓ = Fℓ
2 , ℓ = 1, 2, . . . , L, (1)

g |t<0 = ĝ , φ|t<0 = φ̂.

Here, ĝ and φ̂ are C∞-smooth background solutions that satisfy
equations (1) with the zero sources and

Tjk(g , φ) =
L∑

ℓ=1

∂jφℓ ∂kφℓ −
1

2
gjkgpq∂pφℓ ∂qφℓ −

1

2
m2φ2

ℓgjk .

To obtain a physically meaningful model, the stress-energy tensor
T needs to satisfy the conservation law

∇p(g
pjTjk) = 0, k = 1, 2, 3, 4.



Assume that (gε, φε) depend smoothly on ε ∈ [0, ε0) and solve the
non-linear Einstein equations with sources (F1

ε ,F
2
ε ) and the

conservation law

∇gε
j (Tjk(gε, φε) + (F1

ε )
jk) = 0, k = 1, 2, 3, 4.

Assume that gε|ε=0 = ĝ , φε|ε=0 = φ̂, and Fε|ε=0 = 0.

Then ġ = ∂εg|e|ε=0, φ̇ = ∂εφε|ε=0 and f j = ∂εF
1
ε |ε=0, satisfy the

linearized conservation law

∑L
ℓ=1

f 2

ℓ ∂j φ̂ℓ +
1

2
ĝpk∇̂pf

1

kj = 0, j = 1, 2, 3, 4.



Definition
Linearization stability (Choquet-Bruhat, Deser, Fischer, Marsden)
Let f = (f 1, f 2) satisfy the linearized conservation law

∑L
ℓ=1

f 2

ℓ ∂j φ̂ℓ +
1

2
ĝpk∇̂pf

1

kj = 0, j = 1, 2, 3, 4 (2)

and let (ġ , φ̇) be the corresponding solution of the linearized
Einstein equation. We say that f has the Linearization Stability
(LS) property if there is ε0 > 0 and families

Fε = (F1

ε ,F
2

ε ) = εf + O(ε2),

gε = ĝ + εġ + O(ε2),

φε = φ̂+ εφ̇+ O(ε2),

where ε ∈ [0, ε0), such that (gε, φε) solves the non-linear Einstein
equations and the conservation law

∇gε
j (Tjk(gε, φε) + (F1

ε )
jk) = 0, k = 1, 2, 3, 4.



Let Vĝ ⊂ M be a open set that is a union of freely falling geodesics
that are near µ, L ≥ 4.
Condition A: Assume that at any x ∈ Vĝ the 4 × 4 matrix

A(x) =
[
( ∂j φ̂ℓ(x))

4

ℓ,j=1

]

Vĝ

W
Yis invertible.

Theorem (Kurylev-L.-Oksanen-Uhlmann)

Let Condition A be valid and W ⊂ Vĝ be open. Assume that

f = (f 1, f 2) satisfies the linearized conservation law and f is

supported in W . Then f has a linearization stability property with

a family Fε supported in W .



An alternative formulation

We can also formulate the direct problem for the Einstein-scalar
field equations. Let g and φ = (φℓ)

L
ℓ=1

satisfy

Einjk(g) = Pjk + Tjk(g , φ), on (−∞, t0)× N,

�gφℓ − m2φℓ = Sℓ, ℓ = 1, 2, 3, . . . , L,

Sℓ = Qℓ + S2nd
ℓ (g , φ,∇φ,Q,∇gQ,P ,∇gP),

g |t<0 = ĝ , φ|t<0 = φ̂.

Here Q and Pjk are considered as the primary sources.
The functions S2nd

ℓ need to be constructed so that the conservation
law is satisfied for all solutions (g , φ). These functions correspond
to a model for a measurement device.
When Condition A is satisfied, secondary source functions S2nd

ℓ can
be constructed, for small Q and P , by solving a pointwise system of
linear equations.



Let Vĝ ⊂ M be a neighborhood of the geodesic µ and p−, p+ ∈ µ.

Theorem (Kurylev-L.-Uhlmann)

Assume that the condition A is valid. Let ε > 0 be small and

D = {(Vg , g |Vg
, φ|Vg

,F|Vg
); g and φ satisfy Einstein equations

with a source F = (F1,F2), supp (F) ⊂ Vg , ‖F‖C6 < ε,

∇j(T
jk(g , φ) + F jk

1
) = 0}.

The data set D determines uniquely the conformal type of the

double cone (J+(p−) ∩ J−(p+), ĝ ).



Thank you for your attention!


