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The Einstein-Maxwell System

Spacetime is a Lorentzian 4-manifold (N4, g) satisfying the

Einstein equations

Rab −
1

2
R gab = Tab

T is the energy-momentum-stress tensor of the matter fields. Here

we assume it is determined by the electromagnetic field strength

Tab = −
(
FacF

c
b +

1

4
FcdF

cdgab

)
where F satisfies the Maxwell equations

div F = J , dF = 0

and J is the charge-current density.
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The Einstein-Maxwell System

The Einstein equation Rab − 1
2R gab = Tab is the Euler-Lagrange

equation for the Hilbert-Einstein functional;

H(g) =

∫
N
{Rg + L} dµg

where Rg: the scalar curvature, Rab: the Ricci curvature of the

Lorentzian metric g, and L: the Lagrangian for non-gravitational

fields.
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Vacuum = Ricci-flat

Recall the following rigidity result from Riemannian/Lorentzian

geometry;

Rabcd = 0 ⇒ the space is flat; e.g. Rn,R3,1

When L = 0 (⇔ Tab = 0), the vacuum Einstein equation (VEE)

Rab − 1
2R gab = 0 implies Rg = 0, and hence

Rab = 0;

the second simplest curvature equation conceivable.
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Special Solutions I

The simplest solution to the VEE is given by

g = −dt2 + δ, N4 = R× R3

where δ is the standard metric on R3.

The second simplest solution to the VEE is the Schwarzschild

solution, whose exterior region is given by

g = −v2dt2 + u4δ, N4 = R×
(
R3 \ B

)
where B = Bm/2(0) and

v =
1−m/2r

1 +m/2r
, u = 1 +

m

2r

The Riemannian metric u4δ is scalar flat.
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How does a blackhole look like?
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How does a blackhole look like?

w

x, y, z

{t = constant} Schwarzschild slice as a hypersurface in R4.
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Special Solutions II

The exterior region of the third simplest solution; the

Reissner-Nordström (1918) spacetime is given by

g = −v2dt2 + u4δ, N4 = R×
(
R3 \ B

)
where B = B√

m2−q2 /2
(0) and

v =
1− (m2 − q2)/4r2

1 +m/r + (m2 − q2)/4r2
, u =

√
1 +

m

r
+

m2 − q2

4r2

with electric and magnetic fields

E = u−6∇
(q
r

)
, B ≡ 0, R(u4δ) = 2|E |2

m ≥ |q| ⇒ naked singularity. q = 0 case : Schwarzschild.
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Special Solutions III

The Majumdar-Papapetrou (1947) spacetime is given by

g = −u2dt2 + u−2δ N4 = R×
(
R3 \ ∪N

i=1{pi}
)

where

u =

(
1 +

N∑
i=1

mi/ri

)−1

, E = ∇ log u, B ≡ 0.

mi > 0 is both the mass and charge of each black hole, and ri is

the Euclidean distance to the point pi .

We also have R(u−2δ) = 2|E |2.
When N = 1, this reduces to the extremal Reissner-Nordström

solution m = |q|.
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Static Solution and Elliptic System

Theorem
(Chrusciel, Heusler, Bunting, Masood-ul-Alam, Tod) The only

static black hole solutions of the Einstein-Maxwell system are the

Reissner-Nordström and Majumdar-Papapetrou spacetimes.
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Static Solution and Elliptic System

All the static Einstein-Maxwell solutions above can be written as

ds2 = −V 2dt2 + g , A = ϕdt

together with

Rij = V−1∇i∇jV − 2V 2∇aϕ∇bϕ+ V−2|∇ϕ|2gij
△gV = V−1|ϕ|2

△gϕ = V−1∇a∇aϕ

satisfied on the space-like hypersurface Σ := {t = const. } where

i = 1, 2, 3. V > 0 satisfies the boundary conditions V → 1 as

x → ∞ and V |∂Σ = 0.
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Initial Data and Constraints

Theorem (Fundamental Theorem of Surface Theory (Bonnet))

Given an embedding data set (M, g , k) satisfying{
Rijkl = kijkkl − kilkjk (Gauss equation)

Dikjk − Djkik = 0 (Codazzi equation)

there exists a unique (up to geometric motions) embedding

ι : Mn ↪→ Rn+1 so that g and k are the first and the second

fundamental forms of ι.
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Initial Data and Constraints for VEE

(M, g , k) is an initial data set for the Einstein system if the

following set of constraint equations hold

µ := 0 =
1

2
(R(3) + (Tr k)2 − |k |2)

J := 0 = div(k − (Tr k)g).

where µ and J are the energy and momentum density of the

matter fields. (cf. µ = 0:Tr2(Gauss eqn), J = 0:Tr(Codazzi eqn))

The dominant energy condition is:

µ ≥ |J|

always satisfied when vacuum (µ = 0& J = 0).

Yamada On Riemannian Geometry of the Einstein Equation



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Initial Data and Constraints for EME

(M, g , k,E ,B) is an initial data set for the Einstein-Maxwell

system if the following set of constraint equations hold

µ := T (N,N) =
1

2
(R(3) + (Tr k)2 − |k |2)

J := T (N, ·) = div(k − (Tr k)g)

div E = 0, divB = 0.

where µ and J are the energy and momentum density of the

matter fields.

The dominant energy condition is:

µ ≥ |J + 2E × B|+ |E |2 + |B|2
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Initial Data and Constraints

Theorem (Choquet-Bruhat–Geroch)

Suppose that (M3, g , k) is an initial data set for the Einstein

equation. Then there exists a unique maximal development (N4, g)

where (M3, g) is isometrially embedded (g|M = g) with its exterior

curvature k.

Corollary

Suppose that (M, g , k,E ,B) is an initial data set for the

Einstein-Maxwell equation. Then there exists a unique maximal

development (N4, g,F ) where (M3, g) is isometrically embedded

(g|M = g) with its exterior curvature k and the electro-magnetic

tensor F inducing E and B.
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Asymptotic Flatness

Here we are concerned with time-symmetric data k = 0, and the

purely electric case B ≡ 0. Then the constraints and the dominant

energy condition are reduced to

R(3) ≥ 2|E |2.

A time-symmetric (k ≡ 0) initial data set (M, g ,E ) is

asymptotically flat if there is a compact set K such that M \ K is

the disjoint union of finitely many ends diffeomorphic to R3 \ B,
and the fields have the following decay along those ends:

gij − δij = O1(r
−1), E = O(r−2).
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Asymptotic Invariants

AF-condition ⇒ SO(3, 1) action on the sphere at the infinity ⇒
preserved quantities by Noether’s Theorem. (Hamiltonian

Formulation)

Define the ADM mass and total charges by

m =
1

16π
lim
r→∞

∫
Sr

(gij ,i − gii ,j)ν
j

qe =
1

4π
lim
r→∞

∫
Sr

E · ν, qb =
1

4π
lim
r→∞

∫
Sr

B · ν.
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Newton versus Einstein

The Newtonian equation of motion is

d2x

dt2
= −∇ϕ, △ϕ = 4πρ

where the motion is governed by the first derivative of a potential

which is a solution of a second order elliptic PDE.

The Einstein equation is

d2x i

dt2
= −Γijk

dx j

ds

dxk

ds
, Rab −

1

2
Rgab = Tab

where the motion (geodesic equation) is governed by the first

derivative (Γijk) of a potential g, which is a solution of a system of

second order hyperbolic PDE’s.
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Newton versus Einstein (continued)

The potential for the Newtonian equation of motion is of the form

ϕ(x) =
m

r
+ o(r−1)

where m is the total mass
∫
ρdµ

The potential for the equation of motion for the general relativity is

gab|{t=const.} = (1 +
m

2r
+ o(r−1))4 δab

where m is the ADM mass for the asymptotically flat isolated

system.
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Positive Mass Theorems

In pure vacuum E = B = 0 (time-symmetry), the dominant energy

condition reduces to R(3) ≥ |k|2 (R ≥ 0 resp.).

Theorem (Schoen–Yau 1979-81, Witten 1981)

Let (M, g , k) be an asymptotically flat initial data set satisfying

the dominant energy condition, then m ≥ 0 with equality if and

only if M ↪→ Minkowski space.

Theorem (Gibbons, Hawking, Horowitz, Perry (1983))

Let (M, g , k ,E ,B) be an asymptotically flat initial data set

satisfying the dominant energy condition, then m ≥
√

q2e + q2b,

and equality holds iff (M, g , k,E ,B) ↪→ MP4.

Note that the case of equality was only established in (2006) by

Chrusciel, Reall, Tod, assuming the maximal slice condition. The

general case of equality is still open.

Yamada On Riemannian Geometry of the Einstein Equation



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Riemannian Penrose Inequality

We now restrict to the time symmetric (k = 0) case. The black

hole horizon S is the outermost minimal surface. Each component

of such a surface must have spherical topology, and the topology

of the exterior is trivial. We define the area radius as r =
√

A/4π,

where A is the area of S .

Theorem (Bray, Huisken/Ilmanen, 2001)

Let (M, g) be an asymptotically flat Riemannian 3-manifold with

an outermost minimal surface boundary of area radius r , and

R3 ≥ 0. Then

m ≥ r

2
,

with equality iff (M, g) ∼= Sch3.
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A Charged Penrose Inequality

A natural generalization of the Penrose inequality was proposed by

Jang (1979), and later by Gibbons. In the pure electric (B ≡ 0),

time-symmetric case, the dominant energy condition is R3 ≥ 2|E |2.

Theorem (Jang, Huisken/Ilmanen)

Let (M, g ,E ) be an asymptotically flat time symmetric initial data

set with a single component black hole boundary of mass m, area

radius r , and charge q. If the dominant energy condition is

satisfied, then

m ≥ 1

2

(
r +

q2

r

)
In the case of equality, (M, g ,E ) ∼= RN3 (Khuri-Disconzi.)

What about the multiple black hole case?
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Counterexample

The cross section of the neck in the two-neck

Majumdar-Papapetrou solution MP2 satisfies

m − 1

2

(
r +

q2

r

)
= − 1

2r
(m − r)2 < 0.

This suggests that the MP spacetime violates in spirit (MP is NOT

AF! ) “the charged Penrose inequality” unless there is only one

black hole (MP1).

Theorem (Weinstein–Yamada, 2005)

There exists an asymptotically flat initial data set (M, g ,E ) with a

multiple component black hole boundary, and satisfying the

dominant energy condition, for which the charged Penrose

inequality is violated.
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Physical Arguments

We note that the inequality m ≥ 1/2(r + q2/r) is equivalent to:

m −
√

m2 − q2 ≤ r ≤ m +
√

m2 − q2.

Penrose’s heuristic physical arguments, based on cosmic

censorship, yield only the upper inequality.

The counterexample above does not yield a violation of cosmic

censorship:

4πr2 = A = 4π
∑

q2i ≤ 4π
(∑

qi

)2
= 4πq2 ≤ 4πm2

in the Majumdar-Papapetrou spacetime. (Recall |q| ≤ m.)
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Main Theorem (arXiv:1409.3271)

Theorem (Gilbert Weinstein–Marcus Khuri–S.Y.)

Let (M, g ,E ) be an AF time-symmetric initial data set satisfying

the dominant energy condition R ≥ 2|E |2, and having mass m,

area radius r , and charge q. Then r ≤ m +
√

m2 − q2 with

equality if and only if the data is RN.
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An Observation

We observe that the inequality

r ≤ m +
√

m2 − q2

will follow from the following two inequalities:

m ≥ |q| if r ≤ q

m ≥ 1

2

(
r +

q2

r

)
if q < r

Note that m ≥ |q|, i.e., the positive mass theorem with charge has

been established, regardless of the relation between q and r . Hence

it remains to establish the second inequality, assuming q < r .
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Juxtaposing the inequalities

We have the following set of inequalities.

m ≥ 0

m ≥ 1

2
r

m ≥ 1

2

(
r +

q2

r

)
if r ≥ |q|

m ≥ |q| if r < |q|

Note that there is no topological restrictions to the inequalities and

that the equality cases are given by the exact solutions.
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Graphical representation of geometric inequalities

ρ

|q|

|q|

m >
1

2

(

ρ+
q2

ρ

)

m >
1

2
ρ

N
≥

2

N
≥

3

N
≥

4. . . . . .

m
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ADM formulation as an Inverse Problem

In summary,

The time-invariant Hamiltonians (the ADM mass m and the total

charge q) are the scattering data observable at the infinity, and the

Penrose type inequalities give a glimpse to the geometry of the

finite regions, in particular the size of the blackhole (area radius ρ),

which in turn tells the size of the source of gravitational force.
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