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Bayesian inversion

Logic in Bayesian inference:

Prior modeling =⇒
Measurement Posterior modeling

Fundamental implications to inverse problems:

All variables included in the model are represented by random
variables.

The degree of information concerning these values is coded into their
distributions.

The solution of the problem is the posterior probability distribution.

Hence the Bayesian paradigm asks what is our information about the
unknown?
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Bayesian solution to an inverse problem

Problem setting changes

m = Au+ e ⇒ M = AU + E

where the capital letters M,U and E stand for random variables.

Bayesian solution to an inverse problem is then the probability distribution
of U conditioned on a sample of M , i.e., the measurement. The
probability measure

P(U ∈ U |M = m)

is called the posterior probability. Here U denotes some set of possible
values of the unknown U .
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The Bayes formula in finite dimensions

Suppose all related random variables are Rn-valued and their distributions
are absolutely continuous with respect to the Lebesgue measure.

Prior density πpr(u) expresses all prior information independent of the
measurement.

Likehood density π(m | u) is the likelihood of a measurement outcome m
given U = u.

Bayes formula:

πpost(u) = π(u | m) =
πpr(u)π(m | u)

π(m)
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Typical point estimators

Classical inversion methods produce single estimates of the unknown. In
statistical approach one can calculate point estimates and confidence or
interval estimates.

Maximum a posteriori estimate (MAP):

uMAP = arg max
u∈Rn

π(u | m)

Conditional mean estimate (CM):

uCM = E(u |M = m) =

∫
Rn

u′π(u′ | m)du′
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The Gaussian case

Example. Let M = AU + E with E ∼ N (0, Ce) and U ∼ N (0, Cu). In
this case, the posteriori density function is

π(u | m) ∝ πpr(u)π(m | u)

∝ exp

(
−1

2

(∥∥∥C−1/2u u
∥∥∥2
2

+
∥∥∥C−1/2e (m−Au)

∥∥∥2
2

))
.

The MAP estimate for this posteriori distribution

arg max
u∈Rn

π(u | m) ⇔ arg min
u∈Rn

(
‖u‖2

C−1
u

+ ‖m−Au‖2
C−1

e

)
.

In fact, for this example the MAP and the CM estimates coincide. In
general, they can be worlds apart.
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TV prior and why dim=∞ is important?

Consider a toy problem:

m̂(t) = Au(t) + e(t),

where A is a convolution operator as follows:
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Total Variation prior (Lassas–Siltanen 2004)

Total Variation prior in Bayesian inversion is formally defined as

πprior(u) ∝ exp

(
−αn

∫
|∇u|dt

)
to emulate the effect of regularization by BV-norm. Therefore, the
posterior density is

πpost(u) ∝ exp

(
−1

2
|Au−m|2 − αn

∫
|∇u|dt

)
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Total Variation prior (Lassas–Siltanen 2004)

Recall that

πprior(u) ∝

exp

(
−αn

∫
|∇u|dt

)
It turns out that TV prior is
asymptotically unstable. The
picture on the right is taken
from

M. Lassas and S. Siltanen,
Inverse problems 20(5), 2004.
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Discretization invariance

M = AU + E Theoretical model

↓
Mk = AkU + Ek Measurement model

↓
Mkn = AkUn + Ek Computational model
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Challenges with infinite dimensions

(1) No uniform translation-invariant measure available (Lebesgue
measure) ⇒ working with the Bayes formula is more cumbersome

(2) Point estimators are problematic (CM is well-defined but difficult
analyse, what is MAP?)

(3) Very few results on non-Gaussian models (Besov or hierarchical priors)
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The Bayes formula in infinite-dimensional space

We consider the following measurement setting:

(1) a linear inverse problem M = AU + E, where A : X → Rd is
bounded,

(2) the prior distribution λ is a probability distribution on (X,B(X)) and
the noise satisfies E ∼ N (0, I)

Then a conditional distribution of U given M exists and

µpost(U | m) =
1

Z

∫
U

exp

(
−1

2
‖Au−m‖2Rd

)
λ(du) U ∈ B(X),

for almost every m ∈ Rd.
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Some of the existing infinite-dimensional literature

Behavior of Gaussian distributions is well-known (Mandelbaum
(1984), Luschgy (1995), Lasanen (2002), Stuart )

Posterior consistency i.e. noise converges to delta distribution
(Pikkarainen-Neubauer (2008), Stuart, Agapiou, Kekkonen and many
others)

Non-Gaussian phenomena (Siltanen et al. (2004, 2009, 2011),
Burger-Lucka (2014))

Discretization invariance (Siltanen et al. (2004, 2009), Lasanen 2012)

How to define a MAP estimate (Hegland (2007), Dashti et al.
(2013), H-Burger (2015))
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Differentiability of measures

The following concept originating to papers by Sergei Fomin in the 1960s.

Definition

A measure µ on X is called Fomin differentiable along the vector h if, for
every set A ∈ B(X), there exists a finite limit

dhµ(A) = lim
t→0

µ(A+ th)− µ(A)

t

The set function dhµ is a countably additive signed measure on B(X) and
has bounded variation due to the Nikodym theorem.

We denote the domain of differentiability by

D(µ) = {h ∈ X | µ is Fomin differentiable along h}
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Differentiability of measures

By considering function f(t) = µ(A+ th) and its derivative at zero, we
see that dhµ is absolutely continuous with respect to µ.

Definition

The Radon–Nikodym density of the measure dhµ with respect to µ is
denoted by βµh and is called the logarithmic derivative of µ along h.

Consequently, for all A ∈ B(X) the logarithmic gradient βµh satisfies

dhµ(A) =

∫
A
βµh (u)µ(du)

and, in particular, we have dhµ(X) = 0 for any h ∈ D(µ) by definition.
Moreover, βµsh = s · βµh for any s ∈ R.
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Finite dimensional example

Example. Suppose the posterior is of the form

πpost(u | m) ∝ exp

(
−1

2
|Au−m|22 − J(u)

)
with differentiable J (e.g. J(u) = |C−1/2u u|22 for a Gaussian prior). Then
the logarithmic derivate satisfies

βµh (u) = −〈A∗(Au−m) + J ′(u), h〉.

Formally, we want study the zero points of βµh in the infinite-dimensional
case (see Hegland 2007).
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Gaussian example

Example. Suppose

X is a separable Hilbert space

T is a non-negative self-adjoint Hilbert–Schmidt operator on X and

γ is a zero-mean Gaussian measure on (X,B(X)) with mean u0 and
covariance T 2,

then the Cameron–Martin space of γ is defined by

H(γ) := T (X), 〈h1, h2〉H(γ) = (T−1h1, T
−1h2)X .

and the logarithmic derivative of γ satisfies

βγh(u) = −〈h, u− u0〉H(γ) for any h ∈ D(γ) = H(γ).

Pitfall: The expression for βγh should be understood as a measurable
extension.
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MAP estimate by Dashti-Law-Stuart-Voss (2013)

Definition

Let M ε = supu∈X µ(Bε(u)). Any point û ∈ X satisfying

lim
ε→0

µ(Bε(û))

M ε
= 1

is a MAP estimate for the measure µ.

We remark that limε (µ(Bε(u))/M ε) ≤ 1 holds for any u ∈ X. Dashti and
others showed that for certain non-linear F , the MAP estimate for
Gaussian noise ρ and prior λ satisfies

û = argminu∈X

(
‖F (u)−m‖2CM(ρ) + ‖u‖2CM(λ)

)
.

How to generalize for non-Gaussian priors?
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Generalized Onsager–Machlup functional

Theorem (Bogachev)

Suppose µ is a Radon measure on a locally convex space X and is Fomin
differentiable along a vector h ∈ X. Moreover, if, exp(ε|βµh (·)|) ∈ L1(µ)
for some ε > 0, then

dµh
dµ

(u) = exp

(∫ 1

0
βµh (u− sh)ds

)
in L1(µ).

We also need to require that

(A1) for any h ∈ E there exists ε > 0 such that the prior probability
measure λ satisfies exp(ε|βλh(·)|) ∈ L1(λ).
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Main tools

We need to assume that

(A2) there exists a separable Banach space E ⊂ D(µ) such that E is
topologically dense in X and βµh ∈ C(X) for any h ∈ E that is βµh
has a continuous representative.

Lemma

Assume that µh � µ and denote rh = dµh
dµ ∈ L

1(µ). Suppose rh has a

continuous representative r̃h ∈ C(X), i.e., rh − r̃h = 0 in L1(µ). Then it
holds that

lim
ε→0

µh(Bε(u))

µ(Bε(u))
= r̃h(u)

for any u ∈ X.
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Weak MAP estimate

Definition (H–Burger)

We call a point û ∈ X, û ∈ supp(µ), a weak MAP (wMAP) estimate if

dµh
dµ

(û) = lim
ε→0

µ(Bε(û− h))

µ(Bε(û))
≤ 1

for all h ∈ E.
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Every MAP is a wMAP

Lemma

Every MAP estimate û is a weak MAP estimate.

Proof.

The claim is trivial since

dµh
dµ

(û) ≤ lim
ε→0

M ε

µ(Bε(û))
= 1

for any h ∈ E.
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Connection to a variational problem

A probability measure λ on B(X) is called convex if, for all sets
A,B ⊂ B(X) and all t ∈ [0, 1], one has

λ(tA+ (1− t)B) ≥ λ(A)tλ(B)1−t.

Theorem

(1) If û ∈ X is a weak MAP estimate of µ, then βµh (û) = 0 for all h ∈ E.

(2) Suppose that µ is convex and there exists ũ ∈ X such that βµh (ũ) = 0
for all h ∈ E. Then ũ is a weak MAP estimate.
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Theorem

If û ∈ X is a weak MAP estimate of µ, then βµh (û) = 0 for all h ∈ E.

Proof.

It follows from dµh
dµ (û) ≤ 1 and identity generalized Onsager–Machlup

formula that ∫ t

0
βµh (û− sh)ds =

∫ 1

0
βµth(û− s′ · th)ds′ ≤ 0

for all h ∈ E and t ∈ R. By continuity we then have βµh (û) ≤ 0. Now since
h,−h ∈ E ⊂ D(µ) and by similar reasoning βµ−h(û) ≤ 0, we must have

0 ≤ −βµ−h(û) = βµh (û) ≤ 0

and the claim follows.
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So what about our posterior measure?

Recall that

µpost(U | m) =
1

Z

∫
U

exp

(
−1

2
|Au−m|2

)
λ(du)

λ is convex ⇒ µpost is convex

Also, D(λ) ⊂ D(µpost) and

dhµpost = f · dhλ+ ∂hf · λ

=
(
βλh(·)− 〈A · −m,Ah〉Rd

)
fλ

= β
µpost
h µpost
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Theorem

If λ satisfies (A1) and (A2), then so does µpost.

Proof.

(A1) is clear. For (A2) we have∥∥exp(ε|βµposth (·)|)
∥∥
L1(µ)

≤ C
∫
X

exp(ε(C1|Au−m|Rd + |βλh(u)|)) exp

(
−1

2
|Au−m|2

)
λ(du)

≤ C̃
∫
X

exp
(
−(|Au−m|Rd − C2)

2
)

exp(ε|βλh(u)|)λ(du)

≤ C̃
∥∥∥exp(ε|βλh(·)|)

∥∥∥
L1(λ)

,

for suitable ε > 0 and constants C, C̃, C1, C2 > 0.
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Weak MAP in Bayesian inversion

Corollary

Let us assume that µpost and λ are as earlier. Moreover, we assume that
the prior distribution λ is a convex measure and there is an (unbounded)
convex functional J : X → [0,∞], which is Frechet differentiable
everywhere in its domain D(J) and J ′(u) has a bounded extension
J ′(u) : E → R such that

βλh(u) = J ′(u)h

for any h ∈ E and any u ∈ X. Then a point û is a weak MAP estimate if
and only if û ∈ arg minu∈X F (u) where

F (u) =
1

2
|Au−m|2 + J(u). (1)
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Shortly about Besov spaces

Suppose {ψ`}∞`=1 form an orthonormal wavelet basis for L2(Td). We
define Bs

pq(Td) as follows: the series

f(x) =

∞∑
`=1

c`ψ`(x) (2)

belongs to Bs
pq(Td) if and only if

2js2
j( 1

2
− 1

p
)

2j+1−1∑
`=2j

|c`|p
1/p

∈ `q(N). (3)

We write Bs
p = Bs

pp.
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Besov priors

Definition

Let 1 ≤ p <∞ and let (X`)
∞
`=1 be independent identically distributed

real-valued random variables with the probability density function

πX(x) = σp exp(−|x|p) with σp =

(∫
R

exp(−|x|p)dx
)−1

. (4)

Let U be the random function

U(x) =

∞∑
`=1

`
− s

d
− 1

2
+ 1

pX`ψ`(x), x ∈ Td.

Then we say that U is distributed according to a Bs
p prior.
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Besov priors

Theorem

It holds that

(1) D(λ) = B
s+( 1

2
− 1

p
)d

2 (Td) for p > 1,

(2) exp(|βλh |) ∈ L1(λ) for any h ∈ E = B
ps−(p−1)t
p (Td) and

(3) β̃λh ∈ C(Bt
p(Td)) for any h ∈ Bps−(p−1)t

p (Td) and 1 < p ≤ 2.

Moreover, the weak MAP estimate of the inverse problem is obtained by
minimizing functional

FBesov(u) =
1

2
|Au−m|2 + ‖u‖pBs

p
.

T. Helin (UH) MAP estimates in Bayesian inversion January 2016 30 / 31



Conclusions

Infinite-dimensional Bayesian inverse problems contain many big open
questions

Studying differentiability of the posterior opens new avenues of
research

MAP estimates can be solved for non-Gaussian priors with certain
differentiability

For more details:

Helin, T. and Burger, M.: Maximum a posteriori probability estimates in

infinite-dimensional Bayesian inverse problems, Inverse Problems 31(8) (2015).
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