

🙀 ヒッグス粒子「発見」を超えて

標準理論の圧倒的精度

ヒッグス粒子は見つかったが、ヒッグス

- Doubletが2つあれば、5つのヒッグス粒子 (中性: 3つ、荷電: 2つ).
- 125 GeVヒッグス粒子以外に、electroweak singletが一つあるというモデルも。
- 複数のヒッグス粒子があったとして、どの質量域にいるかは、不明。
- 又、崩壊モードは、モデルやパラメータに大きく依存するため、広範なシナリオを網羅する 探索が必要。筑波大学は、H→ZZ (大川、笠原)やH±→tb (佐藤、永田、萩原)で大きく貢献。

ヒッグス粒子とBSM崩壊

- ヒッグス粒子の崩壊は、標準理論の予測通りなのか?
- 標準理論が予測するヒッグス粒子の崩壊幅は、4.1 MeV。
 直接的な測定では、検出器の分解能によって測定できない。干渉を用いた、崩壊幅の間接測定でも、崩壊幅の上
 限は標準理論の予測の5倍程度。
- <u>未発見のBSM崩壊モード (暗黒物質, etc.)が、依然として</u>
 <u>存在しうる。</u>ATLAS Higgs BSM groupでは、Run-1以
 来、以下のカテゴリー (Domain)に分けて、探索を遂行。

大川とOleg Brandt (Heidelberg)が責任者

Exotics decays with MET, Dark-sector Inspired	mono H (+yy+MET) mono H (+bb+MET) mono H (+4I+MET) ZH+(II)INV VBF H+INV H+yydark ggF H+INV (monojet).	Exotics decays with no MET, Dark-sector / NMSSM Inspired	* h>2a>bbµµ * h>2a>4b * h>2a+yµT * h>x1x2>bb+MET H+ZdarkZ(dark)>4l * h>2a>bbT * h>2a+4r/4µ h>2a+4r/4µ h>2a>4y(multiphoton) * (bb)a	
	ttH→INV (various channels)		* h→Za→llµµ * H+->a1W	

暗黒物質とヒッグス

Mediator Mass [TeV]

- 暗黒物質の直接探索の感度向上は、近年目覚ましい (LUX, Panda-II実験)
- LHCで感度が勝るのは、限られたシナリオ (低質量 域のHiggs-portalや、axial-vector暗黒物質)
- これらのシナリオに重点を置き、広範な探索を遂行中。

大川英希

第3回CiRfSEワークショップ・

ZZ共鳴事象探索

- ZZ共鳴事象には以下の崩壊モー
 ドが存在する。
 - それぞれ質量分解能、シグナル感 度を持つ質量域等に違いがあり、 相補的な探索を提供。

m_H [GeV]

		質量分解能	背景事象の量	シグナル感度
IIII (l=e,µ)	0.4%	高い	極めて少ない	低質量域
llvv	2.6%	低い (& 横方向情報のみ)	少ない	Sub-TeV
llqq	9.2%	高い	比較的多い	Sub-TeV & TeV
vvqq	28%	低い (& 横方向情報のみ)	比較的多い	Sub-TeV & TeV
qqqq	49%	低い	多い	TeVオーダー

大川英希

第3回CiRfSEワークショップ・素粒子構造部門

 $X \rightarrow ZZ \rightarrow 4I$

- 電子とミューオンの再構成性能が、探索に おけるシグナル感度の鍵.

X→ZZ→4I事象選択

9

Leptons and Jets requirements	
Electrons	
Loose Likelihood quality electrons with hit in innermost layer, $E_T > 7 GeV$ and $ \eta < 2.47$	
Muons	
Loose identification $ \eta < 2.7$	
Calo-tagged muons with $p_{\rm T} > 15 \ GeV$ and $ \eta < 0.1$	
Combined, stand-alone (with ID hits if available) and segment tagged muons with $p_T > 5 Ge$	V
Jets	
anti- k_t jets with $p_T > 30 GeV$, $ \eta < 4.5$ and passing pile-up jet rejection requirements	
Event Selection	
QUADRUPLET Require at least one quadruplet of leptons consisting of two pairs of same flavour	
SELECTION opposite-charge leptons fulfilling the following requirements:	
$p_{\rm T}$ thresholds for three leading leptons in the quadruplet - 20, 15 and $10 GeV$	
Maximum of one calo-tagged or standalone muon per quadruplet	
Select best quadruplet to be the one with the (sub)leading dilepton mass	
(second) closest the Z mass	
Leading dilepton mass requirement: $50 \ GeV < m_{12} < 106 \ GeV$	
Sub-leading dilepton mass requirement: $12 < m_{34} < 115 GeV$	
Remove quadruplet if alternative same-flavour opposite-charge dilepton gives $m_{\ell\ell}$.	< 5 GeV
$\Delta R(\ell, \ell') > 0.10$ (0.20) for all same(different)-flavour leptons in the quadruplet	
ISOLATION Contribution from the other leptons of the quadruplet is subtracted	
Muon track isolation ($\Delta R \leq 0.30$): $\Sigma p_{\rm T}/p_{\rm T} < 0.15$	
Muon calorimeter isolation ($\Delta R = 0.20$): $\Sigma E_{\rm T}/p_{\rm T} < 0.30$	
Electron track isolation $(\Delta R \le 0.20)$: $\Sigma E_{\rm T}/E_{\rm T} < 0.15$	
Electron calorimeter isolation ($\Delta R = 0.20$) : $\Sigma E_{\rm T}/E_{\rm T} < 0.20$	
IMPACT Apply impact parameter significance cut to all leptons of the quadruplet.	
PARAMETER For electrons : $ d_0/\sigma_{d_0} < 5$	
Significance For muons : $ d_0/\sigma_{d_0} < 3$	
VERTEX Require a common vertex for the leptons	
Selection $\chi^2/\text{ndof} < 6 \text{ for } 4\mu \text{ and } < 9 \text{ for others.}$	

m_{ii} > 400 GeV && dn_{ii} > 3.3の場合、VBFカテゴリーとして考慮 それ以外は、gluon-fusionカテゴリー

4I)

77*

tť+V, VVV

Z+Jets, tī

/// Uncertainty

ATLAS Preliminary

13 TeV, 14.8 fb

NWA 10

- パイルアップ(多重陽子陽子衝突事 象)の増大に対して、シグナルアク セプタンスは安定。
- 主な背景事象
 - 標準理論からのqq→ZZ, gg→ZZ, VBS ZZ事象: MCで評 価。
 - VVV, tī+V: MCで評価。
 - Z+jets, tf: コントロール領域か らデータで評価。

大川英希

Events/20 (

 $H \rightarrow ZZ^* \rightarrow 4I$, ggF-enriched

300

13TeV, 14.8 fb

第3回CiRfSEワークショップ・素粒子構造部門

X→ZZ→4Iシグナル領域 gluon-gluon fusion (ggF) [fb] ATLAS Preliminary + Data

Observed CL, limit

Expected CL, limit

Expected ± 1 σ

Expected ± 2 o

- 質量域200-1000 GeVで、 探索。標準理論からの有意 な逸脱は見られなかった。
 - 2σレベルの逸脱は、所々観 測された。
 - より高統計のデータでの探 索と、他のチャンネルでの 確認が重要。

35% CL limits on σ_{ggF} × BR(S→ ZZ 10⁻¹⁰200 300 400 500 600 700 800 900 1000 700 800 m₄₁ [GeV] vector boson fusion (VBF) m_s [GeV] [fb] ATLAS Preliminary Data ZZ* ↓ 4]) ATLAS Preliminary $H \rightarrow ZZ^* \rightarrow 4I$, VBF-enriched Observed CL, limit 13TeV, 14.8 fb tť+V, VVV 13 TeV, 14.8 fb Expected CL_s limit 7+, lets tř 35%~CL limits on $\sigma_{\text{VBF}}\times\text{BR}(\text{S}{\rightarrow}\text{ZZ}$ NWA 10 Uncertainty Expected $\pm 1 \sigma$ Expected ± 2 or 10⁻¹200 300 400 500 600 700 800 900 1000 500 400 600 700 800 m₄₁ [GeV] 部門 m_s [GeV]

$CMS X \rightarrow ZZ \rightarrow 4I$

11

ATLAS-CONF-2016-056

CMS-PAS-HIG-15-004

- CMSでは、質量域130-2530 GeVで、探索。有意な逸脱は見られなかった。
- ICHEPデータ以降での、他のZZ探索チャンネルの結果は、まだ発表されていない。

大川英希

第3回CiRfSEワークショップ・素粒子構造部門

X→ZZ→IIvv

- 最もクリーンなチャンネルの一つで、1 TeV以下 の領域で、極めて高い感度を持つ。 (大川、笠原が貢献。大川は、2012年以来解析 グループの責任者。)
- 最も重要な事は、生成断面積の大きいZ+jets背 景事象を、シグナルアクセプタンスを落とさず に抑制すること

Variables	Cut Values
lepton $p_{\rm T}$ for (leading, subleading)	>(30 GeV, 20 GeV)
$m_{\ell\ell}$	76–106 GeV
$E_{\mathrm{T}}^{\mathrm{miss}}$	>120 GeV
$\Delta \dot{R}_{\ell\ell}$	<1.8
$\Delta \phi(\vec{p}_{T}^{\ell \ell}, \vec{E}_{T}^{\mathrm{miss}})$	>2.7
Fractional $p_{\rm T}$ difference	< 0.2
N _{b-jet}	0
$\Delta \phi(\vec{E}_{\rm T}^{\rm miss}, {\rm jets})$	> 0.4
$p_{\mathrm{T}}^{\ell\ell}/m_{\mathrm{T}}^{ZZ}$	< 0.7

$$(m_{T}^{ZZ})^{2} = \left(\sqrt{m_{Z}^{2} + \left|p_{T}^{\ell}\right|^{2}} + \sqrt{m_{Z}^{2} + \left|E_{T}^{miss}\right|^{2}}\right)^{2} - \left|\vec{p}_{T}^{\ell} + \vec{E}_{T}^{miss}\right|^{2}$$

$$(m_{T}^{ZZ})^{2} = \left(\sqrt{m_{Z}^{2} + \left|p_{T}^{\ell}\right|^{2}} + \sqrt{m_{Z}^{2} + \left|E_{T}^{miss}\right|^{2}}\right)^{2} - \left|\vec{p}_{T}^{\ell} + \vec{E}_{T}^{miss}\right|^{2}$$

$$(m_{T}^{ZZ})^{2} = \left(\sqrt{m_{Z}^{2} + \left|p_{T}^{\ell}\right|^{2}} + \sqrt{m_{Z}^{2} + \left|E_{T}^{miss}\right|^{2}}\right)^{2} - \left|\vec{p}_{T}^{\ell} + \vec{E}_{T}^{miss}\right|^{2}$$

$$(m_{T}^{ZZ})^{2} = \left(\sqrt{m_{Z}^{2} + \left|p_{T}^{\ell}\right|^{2}} + \sqrt{m_{Z}^{2} + \left|E_{T}^{miss}\right|^{2}}\right)^{2} - \left|\vec{p}_{T}^{\ell} + \vec{E}_{T}^{miss}\right|^{2}$$

$$(m_{T}^{ZZ})^{2} = \left(\sqrt{m_{Z}^{2} + \left|p_{T}^{\ell}\right|^{2}} + \sqrt{m_{Z}^{2} + \left|E_{T}^{miss}\right|^{2}}\right)^{2} - \left|\vec{p}_{T}^{\ell} + \vec{E}_{T}^{miss}\right|^{2}$$

$$(m_{T}^{ZZ})^{2} = \left(\sqrt{m_{Z}^{2} + \left|p_{T}^{\ell}\right|^{2}} + \sqrt{m_{Z}^{2} + \left|E_{T}^{miss}\right|^{2}}\right)^{2} - \left|\vec{p}_{T}^{\ell} + \vec{E}_{T}^{miss}\right|^{2}$$

$$(m_{T}^{ZZ})^{2} = \left(\sqrt{m_{Z}^{2} + \left|p_{T}^{\ell}\right|^{2}} + \sqrt{m_{Z}^{2} + \left|E_{T}^{miss}\right|^{2}}\right)^{2} - \left|\vec{p}_{T}^{\ell} + \vec{E}_{T}^{miss}\right|^{2}$$

$$(m_{T}^{ZZ})^{2} = \left(\sqrt{m_{Z}^{2} + \left|p_{T}^{\ell}\right|^{2}} + \sqrt{m_{Z}^{2} + \left|E_{T}^{miss}\right|^{2}}\right)^{2} - \left|\vec{p}_{T}^{\ell} + \vec{E}_{T}^{miss}\right|^{2}$$

$$(m_{T}^{ZZ})^{2} = \left(\sqrt{m_{Z}^{2} + \left|p_{T}^{\ell}\right|^{2}} + \sqrt{m_{Z}^{2} + \left|E_{T}^{miss}\right|^{2}}\right)^{2} - \left|\vec{p}_{T}^{\ell} + \vec{E}_{T}^{miss}\right|^{2}$$

Data/Pred.

10

Events/50 GeV

 Ilqqチャンネルでは、それに加えて、small-R (R=0.4) jetsを用いたカテゴリーも用いる。

大川は、ICHEPの結果(ATLAS-CONF-2016-082)及び、2015+2016の全データを用いた、
 現在進行中の論文のATLAS実験内部審査員 (Editorial Board)を務めている。

200

180

160

140

120

100

80

60

40

20

p^w_T [GeV]

ATLAS Simulation

Pythia Z' \rightarrow tt, t \rightarrow Wb

100 200 300 400 500 600 700 800

JHEP09 (2013) 076

R(q,q)

<

3.5

2.5

2

1.5

0.5

0^E

X→ZZ→llqq

大川英希

第3回CIRtSEワークショッノ・素粒子構造部門

15

2000

2500

0 3000 m_H [GeV]

ATLAS-CONF-2016-082

ATLAS-CONF-2016-082

- ・ llvvチャンネル同様、横質量のみ再構成可能。
- vvqqでは、large-R jetのみを考慮。
 - 13.3 fb⁻¹の時点で、3 TeVまでの質量域で、有意な ずれは観測されなかった。

500

1000

1500

モノジェット探索

Events / 50 GeV

Data / SM

- METトリガー (HLT_xe70)使用
- データのクォリティカット(検出器・非衝突事象の除去)
- Leading jet p_T > 250 GeV
- MET > 250 GeV
- 最大4本のジェット (p⊤>20 GeV, lηl<2.8)
- 現在、解析を2015+2016年で アップデート中。
- ただし、シグナル感度が、W/ Z+jetsの評価の系統誤差によっ て、頭打ちになり始めている。
- quarkとgluon由来のジェットを 分離する、q/g-taggingという手 法を、東工大の陣内・佐藤両氏 と開発中。

IM1	SR	$W(\rightarrow e\nu)$	$W(\rightarrow \mu\nu)$	$Z(\rightarrow \mu\mu)$
Observed events (3.2 fb ⁻¹)	21447	3559	10481	1488
SM prediction (post-fit)	21730 ± 940	3559 ± 60	10480 ± 100	1488 ± 39
Fitted $W(\rightarrow e\nu)$	1710 ± 170	2410 ± 140	0.4 ± 0.1	_
Fitted $W(\rightarrow \mu\nu)$	1950 ± 170	2.4 ± 0.3	8550 ± 330	1.8 ± 0.3
Fitted $W(\rightarrow \tau \nu)$	3980 ± 310	462 ± 27	435 ± 28	0.14 ± 0.02
Fitted $Z(\rightarrow ee)$	0.01 ± 0.01	0.5 ± 0.1	-	-
Fitted $Z(\rightarrow \mu\mu)$	76 ± 30	0.02 ± 0.02	143 ± 10	1395 ± 41
Fitted $Z(\rightarrow \tau \tau)$	48 ± 7	30 ± 2	22 ± 4	0.5 ± 0.1
Fitted $Z(\rightarrow \nu\nu)$	12520 ± 700	1.8 ± 0.1	2.3 ± 0.2	-
Expected $t\bar{t}$, single top	780 ± 240	500 ± 150	1060 ± 330	42 ± 13
Expected dibosons	506 ± 48	150 ± 13	260 ± 25	48 ± 5
Multijets	51 ± 50	-	-	-
NCB	110 ± 110	-	-	-
MC exp. SM events	22500 ± 1400	3990 ± 320	10500 ± 710	1520 ± 98
Fit input $W(\rightarrow e\nu)$	1960 ± 160	2770 ± 210	0.4 ± 0.1	
Fit input $W(\rightarrow \mu\nu)$	1930 ± 170	2.4 ± 0.3	8500 ± 520	1.8 ± 0.2
Fit input $W(\rightarrow \tau \nu)$	4570 ± 300	531 ± 39	500 ± 34	0.16 ± 0.03
Fit input $Z(\rightarrow ce)$	0.01 ± 0.01	0.5 ± 0.1	-	-
Fit input $Z(\rightarrow \mu\mu)$	78 ± 29	0.02 ± 0.02	146 ± 13	1427 ± 92
Fit input $Z(\rightarrow \tau \tau)$	55 ± 6	34 ± 3	25 ± 4	0.6 ± 0.1
Fit input $Z(\rightarrow \nu\nu)$	12440 ± 850	1.8 ± 0.1	2.2 ± 0.1	-
Fit input $t\bar{t}$, single top	780 ± 240	500 ± 160	1060 ± 340	42 ± 13
Fit input dibosons	506 ± 48	150 ± 13	260 ± 25	48 ± 5
data-driven exp. QCD events	51 ± 50	-	_	-
NCB	110 ± 110	_	-	_

Phys. Rev. D 94 (2016) 032005

Z(II)H(inv)探索

- ET^{miss}の第1ビンと~200 GeVで、予測から若干の逸脱。
- BR(H→inv) < 0.98 obs, 0.65 exp [Run-1では0.75 obs, 0.62 exp] @ 95% CL.
- 解析の詳細は、本日の笠原君の講演を参照。

Quark-Gluon Tagging

- Quarkとgluon由来のジェットの内部構造の違いを利用した分離の試み。LEP・Tevatronで 多くの先行研究。
- ATLASでは、1変数のみを用いたtaggerを開発。一方、CMSは、多変数解析を使用。現時 点、ATLASの性能を上回る (同じworking pointで、背景事象の除去が10-20%増)。
- 現在、**多変数解析への移行**と、particle flowの導入による性能の向上を目指している。
- 又、VBF解析への適用も目指している。

大川英希

第3回CiRfSEワークショップ・素粒子構造部門

http://hilumilhc.web.cern.ch/about/hl-lhc-project

- 2016データの統計は、昨年夏の結果から約2倍増大した。本年3月のMoriondで、 数々の解析結果がアップデートされる予定。
- 2018年末には、データが150 fb⁻¹取得される予定。その間に、物理解析の新手法の 開発も進める。2017年は、測定器・パフォーマンスの研究が最優先。
 大川英希 第3回CiRfSEワークショップ・素粒子構造部門

纒め

- ヒッグス・電弱セクターにおける新物理探索の結果について発表した。
- ZZ共鳴事象探索は、クリーンなチャンネルが多く、シグナルへの感度が 高い。複数の崩壊モードで、探索を続けることが重要。
- 又、暗黒物質探索について、いくつかの結果を紹介。今後の高統計デー タで、シグナル感度を向上させていくことが要請されている。(新手法の 開発が必要か?)
- ヒッグス・電弱セクターにおける新物理探索のため、多方面からのアプローチを用いて、発見を目指す。

大川英希

第3回CiRfSEワークショップ・素粒子構造部門