ATLAS実験における重心系衝突エネルギー 8TeV での陽子-陽子衝突のデータを用いた トップクォークとボトムクォークに崩壊する 荷電ヒッグス粒子の探索

数理物質科学研究科 物理学専攻 素粒子実験研究室 博士後期課程3年 永田 和樹

2017年1月24日 CiRfSE ワークショップ

荷電ヒッグス粒子探索の動機

2/11

- 2012年にATLASとCMS実験でヒッグス粒子を発見
- 標準模型の重要な粒子がすべて発見
- 標準模型が抱える未解決問題
 - 階層性問題、ダークマターなど

標準理論を拡張する必要性

ヒッグス項の拡張により荷電ヒッグス粒子が出現

- Two Higgs Doublet Model (THDM)
 - 2つのヒッグス項: 標準理論のヒッグス項をもう1つ追加
 - 5つのヒッグス粒子が出現: h⁰、H⁰、A⁰、H[±]
 - ヒッグス項とフェルミオンやボゾンとの結合のパターンにより、4つのTypeが存在
- Minimum Super-symmetric Standard Model (MSSM)
 - THDM Type-IIを使用
 - SUSY粒子からの輻射補正がヒッグス粒子の質量に効いてくる

荷電ヒッグス粒子の生成と崩壊過程

事象選別

4/11

- ATLAS検出器で取得されたRun1の陽子-陽子衝突のデータを使用
 重心系衝突エネルギー8 TeV、積分ルミノシティ20.3 fb⁻¹
- 事象選別:1つのレプトン、4つ以上のジェット、b-tagされた ジェットが2つ以上
 - 電子: Pt > 25 GeV, |η| < 2.47 (1.37 < |η| < 1.52 は除外)
 - ミューオン: Pt > 25 GeV, |η| < 2.5
 - ジェット: Pt > 25 GeV, |η|<2.5
 - b-tag: 70%の確率でbクォーク由来のジェットを同定

コントロール領域とシグナル領域

- 事象選別後のデータをコントロール領域とシグナル領域に分離
 - コントロール領域: ほとんど背景事象→ 背景事象の理解
 - シグナル領域: 信号事象を多く含む→ 荷電ヒッグス粒子の探索

表:事象中のジェット数とb-tag数に対する2つ領域の定義

	2b-tags	≥ 3b-tags
4jets	コントロール	コントロール
5jets	コントロール	シグナル
>= 6jets	コントロール	シグナル

- 各領域での解析を進めるにあたって、MCシミュレーションで作られた物理過程のサンプルを使用
 - 背景事象: ttbar+jets、ttbar+V、ttbar+H、single top、W/Z+jets、diboson
 - 信号事象: Charged Higgs boson (200 ~ 600 GeVの間の11個の質量点)

*背景事象の一つであるFake leptonに関してはDataから見積もる

6/11

ttbar+Light Flavor jets(薄緑)とttbar+Heavy Flavor jets(深緑+緑)
 が主な背景事象

コントロールプロット

- 背景事象の妥当性の確認: コントロール領域でのBDT入力変数 の分布をデータとシミュレーションで比較
 - すべてのジェットのP₁の和
 - 事象中のジェット間の幾何学的な相関関係
 - 一番高いジェットのP₊
 - b-フレーバージェット間の平均的な距離
 - 一番近いb-フレーバージェット対の不変質量

BDT入力変数のコントロールプロット

BDTの出力

- BDTは荷電ヒッグス粒子の質量点ごとに最適化 - 質量が重いほど、背景事象と信号事象の分離が向上
- シグナル領域におけるBDTの出力の分布
 - -1に近づくほどbackground-like、+1に近づくほどsignal-likeの出力 → 理想的には背景事象が左側、信号事象が右側に集まる
 - 荷電ヒッグス粒子の質量を300 GeV(左図)、または500 GeV(右図)と仮定 した場合の出力の分布 * 青線はData数にnormalizeされている

にフィッティング

生成断面積に対する制限

10/11

フィッティング時に得られた信号強度から生成断面積を計算

- Observed Limit(黒い実線): 実験データを基に得られた値

- Expected Limit(黒い点線):背景事象のみのMCサンプルから見積もられた値

 $- \tan\beta \simeq 0.5, 350 < m_{H^+} < 400 \text{ GeV}$

まとめ

- ATLAS実験における重心系衝突エネルギー8 TeVでの 陽子-陽子衝突のデータを用いて荷電ヒッグス粒子の 探索を行った
 - 生成過程: $g\bar{b}$ → $\bar{t}H^+$
 - 崩壊過程:*H⁺ → t*b
 - 終状態: <u>b</u>bl⁺ *v*qq'
- 統計的に有意な結果を得ることはできなかった
- Observed limitを引いた
 - 200 GeVの質量点において6.28 pb
 - 600 GeVの質量点おいて 0.24 pb
- MSSMのシナリオ (m_h^{mod} -シナリオ)の一部を棄却した
 - $0.5 \leq tan\beta \leq 0.6$ における200 < m_{H^+} < 300 GeVの領域
 - tanβ ≤ 0.5における350 < m_{H+} < 400 GeVの領域

バックアップ

ヒッグス項の拡張とTHDM ¹³	/41
 実験で観測されている事象と矛盾してはいけない 	
- ρ パラメーターが1	
– Flavor Changing Neutral Current (FCNC) がTree Levelで存在しない	
 ρパラメーターとヒッグス項の関係 	
$ \rho = \frac{\sum_{i=1}^{N} v_i^2 [I_i(I_i+1) - \frac{1}{4}Y_i^2]}{\sum_{i=1}^{N} \frac{1}{2}v_i^2 Y_i^2}, i = 1,, N. $	シ
Two Higgs Doublet Model (THDM)	
– 2つのヒッグス項: 標準理論のヒッグス項をもう1つ追加	
— 5つのヒッグス粒子が出現: $h^{ m o}$ 、 $H^{ m o}$ 、 H^{\pm}	
- モデルを特徴づけるパラメーターが存在	
 α: 中性スカラー場の質量行列の対角化の角度 	
・ $tan \beta$: v_2/v_1 (2つの真空期待値の比)	
- FUNCの抑制: 2つのビックス頃とフェルミオンやヘクターホソンとの結 合に制限 \rightarrow 4つのTypeが存在	

14

• ヒッグスポテンシャル

$$V(\Phi_1, \Phi_2) = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 \Phi_1^{\dagger} \Phi_1 \Phi_2^{\dagger} \Phi_2 + \lambda_4 \Phi_1^{\dagger} \Phi_2 \Phi_2^{\dagger} \Phi_1 + \frac{\lambda_5}{2} [(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2].$$

ヒッグス二重項

$$\Phi_a = \left(\begin{array}{c} \phi_a^+ \\ (v_a + \rho_a + i\eta_a)/\sqrt{2} \end{array}\right), \quad (a = 1, 2.)$$

• THDMの質量項

$$\begin{aligned} \mathcal{L}_{\phi^{\pm}mass} &= [m_{12}^2 - (\lambda_4 + \lambda_5)v_1v_2] \left(\begin{array}{c} \phi_1^-, \\ \phi_2^- \end{array} \right) \left(\begin{array}{c} \frac{v_2}{v_1} & -1 \\ -1 & \frac{v_1}{v_2} \end{array} \right) \left(\begin{array}{c} \phi_1^+ \\ \phi_2^+ \end{array} \right) \\ \mathcal{L}_{\eta mass} &= \frac{m_A^2}{(v_1^2 + v_2^2)} \left(\begin{array}{c} \eta_1, \\ \eta_2 \end{array} \right) \left(\begin{array}{c} v_2^2 & -v_1v_2 \\ -v_1v_2 & v_1^2 \end{array} \right) \left(\begin{array}{c} \eta_1 \\ \eta_2 \end{array} \right) \\ \mathcal{L}_{\rho mass} &= - \left(\begin{array}{c} \rho_1, \\ \rho_2 \end{array} \right) \left(\begin{array}{c} m_{12}^2 \frac{v_2}{v_1} + \lambda_1v_1^2 & -m_{12}^2 + \lambda_{345}v_1v_2 \\ -m_{12}^2 + \lambda_{345}v_1v_2 & m_{12}^2 \frac{v_1}{v_2} + \lambda_2v_2^2 \end{array} \right) \left(\begin{array}{c} \rho_1 \\ \rho_2 \end{array} \right) \\ \lambda_{345} &= \lambda_3 + \lambda_4 + \lambda_5. \end{aligned}$$

THDMの結合タイプ

- ・ FCNCの抑制:2つのヒッグス項とフェルミオンやベクターボゾンとの結合に制限
 - Typel:片方がベクターボゾン、もう片方がすべてのフェルミオンに結合
 - Typell: 片方がup-typeのクォーク、もう片方がdown-typeのクォークとレプトンに結合
 - TypellI: 片方がすべてのクォーク、もう片方がdown-typeのレプトンに結合
 - TypeIV: 片方がdown-typeのクォーク、もう片方がup-typeのクォークとdown-typeのレプトンに結合

$$\mathcal{L}_{Yukawa}^{THDM} = -\sum_{f=u,d,l} \frac{m_f}{v} (\xi_h^f \overline{f} f h + \xi_H^f \overline{f} f H - i\xi_A^f \overline{f} \gamma_5 f A) - \frac{\sqrt{2}V_{ud}}{v} \overline{u} (m_u \xi_A^u P_L + m_d \xi_A^d P_R) dH^+ + \frac{\sqrt{2}m_l \xi_A^l}{v} \overline{\nu_L} l_R H^+ + H.c.$$

Yukawa coupling scale factor	Type I	Type II	Туре Ш	Type IV
ξ_h^u	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
ξ^d_h	$\cos \alpha / \sin \beta$	$-\sin lpha / \cos eta$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$
ξ_h^l	$\cos \alpha / \sin \beta$	$-\sin lpha / \cos eta$	$-\sin lpha / \cos eta$	$\cos \alpha / \sin \beta$
ξ^u_H	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin \alpha / \sin \beta$
ξ^d_H	$\sin \alpha / \sin \beta$	$\cos lpha / \cos eta$	$\sin lpha / \sin eta$	$\cos \alpha / \cos \beta$
ξ_{H}^{l}	$\sin \alpha / \sin \beta$	$\cos lpha / \cos eta$	$\cos lpha / \cos eta$	$\sin \alpha / \sin \beta$
ξ^u_A	$\cot eta$	\coteta	\coteta	$\cot eta$
ξ^{d}_{A}	$-\cot\beta$	aneta	$-\coteta$	aneta
$\xi^{\hat{l}}_{A}$	$-\coteta$	aneta	aneta	$-\coteta$

16/41

MSSMにおける荷電ヒッグス粒子

- Minimum Super-symmetric Standard Model (MSSM)
 - THDM-Typellのヒッグス項を使っている
 - Tree Levelだとh⁰の質量がZボソンより小さくなる

 $m_{H^0} > m_{Z^0} \ge Min(m_{A^0}, m_{Z^0}) \cos 2\beta \ge m_{h^0}$

• MSSMではSUSY粒子からの輻射補正が重要になる

- 主にStop粒子(トップクォークのSUSYパートナー)からの寄与が大きい

↓Stop粒子の右巻きと左巻き状態に対する質量行列

$$\mathcal{M}_{\tilde{t}}^2 = \begin{pmatrix} M_{\tilde{t}_L}^2 + m_t^2 + \cos 2\beta (\frac{1}{2} - \frac{2}{3}s_W^2)M_Z^2 & m_t X_t^* \\ m_t X_t & M_{\tilde{t}_R}^2 + m_t^2 + \frac{2}{3}\cos 2\beta s_W^2 M_Z^2 \end{pmatrix}$$

$$m_t X_t = m_t (A_t - \mu^* \cot \beta)$$

- A_t: trilinear Higgs-stop coupling
 μ: Higgsino mass parameter
- どのシナリオを選ぶかによってSUSYパラメーターが変わり、
 ヒッグス粒子への寄与が変わる

— m_hmax, m_hmod+, m_hmod- 等々

MSSM Scenario

- The m_h^{max} scenario (The value of X_t is chosen to maximize the lightest CP-even Higgs mass, m_h₀. This is an old-fashioned benchmark scenario.): M_{SUSY} is 1000 GeV, μ is 200 GeV, M₂ is 200 GeV, X_t^{OS} is 2M_{SUSY} (FD calculation), X_t^{MS} is √6M_{SUSY} (RG calculation), A_b = A_τ = A_t, M_{g̃} is 1500 GeV, M_{l̃3} is 1000 GeV.
- The $m_h^{\text{mod}+}$ scenario (the m_{h^0} is close to the discovered Higgs boson mass by reducing the amount of mixing in the stop sector and the sign of X_t is plus.): M_{SUSY} is 1000 GeV, μ is 200 GeV, M_2 is 200 GeV, X_t^{OS} is 1.5 M_{SUSY} (FD calculation), $X_t^{\overline{\text{MS}}}$ is 1.6 M_{SUSY} (RG calculation), $A_b = A_\tau = A_t$, $M_{\tilde{g}}$ is 1500 GeV, $M_{\tilde{l}_3}$ is 1000 GeV.
- The m_h^{mod-} scenario (the m_h⁰ is close to the discovered Higgs boson mass by reducing the amount of mixing in the stop sector and the sign of X_t is minus.): M_{SUSY} is 1000 GeV, μ is 200 GeV, M₂ is 200 GeV, X_t^{OS} is -1.9M_{SUSY} (FD calculation), X_t^{MS} is -2.2M_{SUSY} (RG calculation), A_b = A_τ = A_t, M_{g̃} is 1500 GeV, M_{l̃} is 1000 GeV.

$$s_{W} \text{ is expressed by } \sqrt{1 - c_{W}^{2}} \text{ with } c_{W} = M_{W}/M_{Z} \qquad \qquad M_{\tilde{q}_{1,2}} = 1500 GeV, \\ M_{\tilde{t}_{L}} = M_{\tilde{b}_{L}} = M_{\tilde{b}_{R}} =: M_{\text{SUSY}}. \qquad \qquad M_{\tilde{t}_{1,2}} = 500 GeV, \\ M_{\tilde{t}_{1,2}} = 500 GeV, \\ M_{1} = \frac{5}{3} \frac{s_{W}^{2}}{c_{W}^{2}} M_{2}. \qquad \qquad A_{f} = 0.$$

4 Flavour Scheme and 5 Flavour Scheme

- 4FS: グルーオン同士の相互作用を記述する摂動の計算過程において、 b-quarkが出現する
- 5FS: PDFにb-quarkがパートンとして含まれている

 Santander matching: 4FSと5FSのcross sectionの計算結果をそれぞれ ln(m_{H+}/m_b)→1とln(m_{H+}/m_b)→∞の極限で得られたものと解釈して足 し合わせる方法

$$\sigma^{matched} = \frac{\sigma^{4FS} + w\sigma^{5FS}}{1+w} \qquad w = \ln\frac{m_{H^{\pm}}}{m_b} - 2$$

荷電ヒッグス粒子の生成断面積×崩壊比

生成過程:4FSと5FSの足し合わせ

・ 崩壊過程:top-quarkとbottom-quark

荷電ヒッグス粒子の崩壊比

$$\begin{split} \Gamma_{H^{\pm}} &= \Gamma_{H^{\pm} \to \tau \nu_{\tau}} + \Gamma_{H^{\pm} \to \mu \nu_{\mu}} + \Gamma_{H^{\pm} \to hW} + \Gamma_{H^{\pm} \to HW} + \Gamma_{H^{\pm} \to AW} \\ \Gamma_{H^{\pm} \to tb} + \Gamma_{H^{\pm} \to ts} + \Gamma_{H^{\pm} \to td} + \Gamma_{H^{\pm} \to cb} + \Gamma_{H^{\pm} \to cs} + \Gamma_{H^{\pm} \to cd} \\ \Gamma_{H^{\pm} \to ub} + \Gamma_{H^{\pm} \to us} + \Gamma_{H^{\pm} \to ud}, \end{split}$$

charged Higgs bosons to charginos, $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{\pm}$, and neutralinos, $\tilde{\chi}_i^0 (i = 1, ..., 4)$

19

- 比較的小さいtanβの領域で、荷電ヒッグス粒子がcharginoとneutralinoに 崩壊する割合が増える
- Charginoの質量項

 $m_{\tilde{\chi}_{1,2}^{\pm}}^{2} = \frac{M_{2}^{2} + |\mu|^{2} + 2M_{W}^{2}}{2} \mp \sqrt{\frac{(M_{2}^{2} + |\mu|^{2} + 2m_{W}^{2})^{2}}{4} - |M_{W}^{2}\sin 2\beta - \mu M_{2}|^{2}}$

• Neutralinoの質量項

mass matrix for the state of $(\tilde{W}^0, \tilde{B}^0, \tilde{H}^0_u, \tilde{H}^0_d)$

	M_1	0	$-M_Z \cos\beta\sin\theta_W$	$M_Z \sin\beta\sin\theta_W$	١
V_{-}	0	M_2	$M_Z \cos\beta\cos\theta_W$	$-M_Z \sin\beta\cos\theta_W$	
<i>I</i> =	$-M_Z \cos\beta\sin\theta_W$	$M_Z \cos\beta\cos\theta_W$	0	$-\mu$	
	$\bigwedge M_Z \sin\beta\sin\theta_W$	$-M_Z \sin\beta\cos\theta_W$	$-\mu$	0 /	/

過去の探索結果 LEP result($e^+e^- \rightarrow H^+H^-$, $H^+ \rightarrow \tau^+\nu$)

過去の探索結果 CDF result (t \rightarrow H⁺b, H⁺ \rightarrow cs)

$m_{H^+}({ m GeV}/c^2)$	60	70	90	100	110	120	130	140	150
Expected	0.13	0.19	0.22	0.15	0.13	0.12	0.10	0.10	0.09
Observed	0.09	0.12	0.32	0.21	0.15	0.12	0.08	0.10	0.13

TABLE I: Expected and Observed 95% C.L. upper limits on $\mathcal{B}(t \to H^+ b)$ for H^+ masses of 60 to 150 GeV/ c^2 .

ATLAS result $(H^+ \rightarrow \tau^+ \nu)$

・ 荷電ヒッグス粒子の質量-tanβ平面上の排除された領域

CMS result (combine)

・ 荷電ヒッグス粒子の質量-tanβ平面上の排除された領域

25

Large Hadron Collider (LHC) 加速器

- LHC加速器 TMS - 全周:27 km 2008 (27 km) - 陽子-陽子衝突 North Area ALICE LHCD - 重心系衝突系 TT40 TT41 SPS エネルギー:14 TeV TT10 ATLAS CNCS - 瞬間ルミノシティー: 5008 Gran Sasso TTEO 10³⁴ cm⁻²s⁻¹ 112 BOOSTER - Bunch数:2808/beam ISOLDE East Area - Proton数: 1.1×10¹¹/bunch ł LINAC 2 Lein LINAC 3 2005 (78 m)
 - 陽子の加速過程
 - 水素原子の電離(Proton 生成) → Linac(50 MeV) → Proton Synchrotron booster(1.4 GeV) → Proton Synchrotron(25 GeV) → Super Proton Synchrotron(450 GeV) → LHC(7TeV)

A Toroidal LHC ApparatuS (ATLAS) 検出器 ^{27 /41}

- 様々な検出器を用いて、粒子の位置やエネルギーを測定
 - 内部飛跡検出器、電磁カロリーメーター、ハドロンカロリーメーター、ミュー オン検出器など
- 検出器の領域は主に二つに分類:barrel(中央)、end-cap(前方と 後方)

レプトントリガー

- 電子トリガー
 - L1トリガー
 - カロリーメーターのη-Φ平面上にできたタワーをある領域内で足し合わせて クラスターを作る
 - クラスターのエネルギーがしきい値以上、またはクラスター中心部の周りにあるタワーのエネルギーの和がしきい値以下ならば通す
 - High Levelトリガー
 - L1トリガーで得られたクラスターの位置やエネルギーの情報を基に、内部飛 跡検出器やカロリーメーターの層ごとに得られた情報も加えて判断する
- ミューオントリガー
 - L1トリガー
 - 横切った層の数と種類、まっすぐ飛んで行ったときのヒット点と実際の ヒット点とのズレから運動量を計算する。しきい値を超えていれば通す
 - High Levelトリガー
 - L1トリガーで得られたヒット点と運動量を基に飛跡を計算する。さらに、
 ミューオン検出器と内部飛跡検出器で測定された飛跡との整合性をとる。
 それら飛跡の情報を基に判断する

粒子同定 (Particle ID)

- 検出器からの情報を組み合わせて、粒子を同定する
 - 電子:内部飛跡検出器と電磁カロリーメーター
 - ミューオン:内部飛跡検出器とミューオン検出器
 - ジェット(クォーク):内部飛跡検出器と二つのカロリーメーター
 - bフレーバージェット:内部飛跡検出器
 - Missing transverse energy(ニュートリノ):全ての検出器

	Tracking chamber	Electromagnetic calorimeter	Hadron calorimeter	Muon detector
Photons		4		
Electrons or positrons		- they		
Muons		~		
Pions or protons				
Neutrons			~~	

再構成された電子に対する要求

30/41

いくつかの条件を要求することで、解析に適した電子を選び出す

- |η| < 2.47(1.37 < |η| <1.52を除く)
- E_T > 25 GeV
- Single lepton trigger (2種類)
 - E_Tに対して高めのしきい値(60 GeV)
 - E_Tに対して低めのしきい値(24 GeV)+ハドロンカロリーメーターや電子の周りで 落とされたエネルギーが小さい
- Tight selection
 - ハドロンカロリーメーターにはみ出したエネルギーの量
 - 飛跡とクラスターの中心点との一致具合
 - 内部飛跡検出器でのヒット数
 - 電磁カロリーメーターの層ごとに落としていったエネルギーの量
- |Z₀| < 2 mm (Z₀=Z方向におけるprimary vertexと飛跡との最接近距離)
 - 主要崩壊点由来の電子であることを要請
- Isolation cut
 - 電子の周りにある飛跡の運動量やクラスターのエネルギーの和が小さい
 - ΔR=0.3以内のP_Tの和が6 GeV以下、ΔR=0.2以内のE_Tの和が6 GeV以下

再構成されたミューオンに対する要求

いくつかの条件を要求することで、解析に適したミューオンを選び出す

- |η| < 2.5
- P_T > 25 GeV
- Single lepton trigger (2種類)
 - P_Tに対して高めのしきい値(36 GeV)
 - P_Tに対して低めのしきい値(24 GeV)+ミューオン周りの飛跡の運動量の和 が小さい
- Combined and Tight selection
 - ミューオン検出器で測定された飛跡と内部飛跡検出器で測定された飛跡 が一致
 - 内部飛跡検出器でのヒット数
- $|Z_0| < 2 \text{ mm}$
- Isolation cut
 - ミューオンの周りにある飛跡の運動量の和が小さい
 - ・ ΔR= 10 GeV/P_T 以内にある飛跡の運動量の和が、P_Tの5%以下

再構成されたジェットに対する要求

32/41

いくつかの条件を要求することで、解析に適したジェットを選び出す

- 以下の条件を要求
 - $|\eta| < 2.5$
 - $P_{T} > 25 \text{ GeV}$
 - Jet Vertex Fraction: ジェット中に含まれている飛跡のうち、一つの主要崩 壊点からの寄与を示す
 - パイルアップイベントからの寄与を減らす
 - P₁<50 GeVかつ|η|<2.4のジェットに対して|JVF|>0.5を要求

$$JVF(jet_i, PV_j) = \frac{\sum_k p_T(track_k^{jet_i}, PV_j)}{\sum_n \sum_l p_T(track_l^{jet_i}, PV_n)}$$

- 変数の説明
 - jet_i:カットの対象となったjet
 - PV_i:ある一つの主要崩壊点
 - k: jet, に含まれるPV, 由来の飛跡に対する添え字
 - n:主要崩壊点に対する添え字
 - I:jet_iに含まれるPV_n由来の飛跡に対する添え字

bフレーバージェット

- bフレーバー同定
 - MV1:以下の変数を多変数解析に用いてbフレーバー同定を行う
 - 主要崩壊点に対する飛跡の衝突係数
 - ・2次崩壊点に関する変数
 - ・ジェット中に含まれるcフレーバーハドロンやbフレーバーハドロンの崩壊の幾 何学的特徴
 - 70%の確率でボトムクォーク由来のジェットを同定するものを使用
- bフレーバー同定の較正
 - トップクォーク対のdilepton崩壊事象を用いて実験データとMCシミュレーション間の同定のefficiencyを測定、P_Tビンごとにズレを補正
- bフレーバージェットのエネルギー較正
 - 飛跡から求めた運動量とカロリーメーターで測定されたエネルギーの比 を用いて実験データとシミュレーションのズレを補正する
 - シミュレーションレベルでbフレーバーハドロンのセミレプトニック崩壊に
 対するエネルギーの較正をする

B-tag algorithmの入力変数

MV1アルゴリズムのperformance

- MV1: neural net work based algorithm is based on multivariate techniques which utilize the output weights of IP3D, SV1 and JetFitterCombNN algorithm
- 70 % efficiency:シミュレーションのttbarサンプルにおけるPt >20 GeV 以上、η
 2.5以内のすべてのb-jetに対して70 %の確率でtag。
 - Ttbarのsingle-leptonとdilepton崩壊事象を使用
- 下図:b-tag effigiencyとrejectionの関係。*jetのP_Tは15 GeV以上
 - Light-jetをMis-tagする確率は1%
 - C-jetをmis-tagする確率は20%

b-tagのefficiencyの較正 (result)

• 最終的にefficiencyはjetのPt binごとに較正される

• 較正はscale factor (efficiency_{data}/efficiency_{MC})として与えられる

Missing Transverse Energy (MET)

ニュートリノが持って行った分のエネルギーが、x-y平面上でのエネルギーの損 失として観測される

• METはカロリーメーター由来のものとミューオン由来のものに分けられる

$$E_{x(y)}^{\text{miss}} = E_{x(y)}^{\text{miss,calo}} + E_{x(y)}^{\text{miss,muon}}$$

• カロリーメーター由来: METを粒子の種類ごとに計算し、低い運動量の ジェットやクラスターからはみ出したエネルギーも考慮している

重複の除去と事象選別

- 重複の除去: 解析に使用するのに適さない粒子を除去
 - ジェットから出てきたミューオンや電子
 - 電子をジェットとして誤同定したもの
 - 電子とミューオンで飛跡が一致している場合は、その事象を除去
- 事象選別
 - 信号過程の終状態:レプトン1つ、ジェット5つ(3つはb クォーク由来)、MET
 - 事象に対して以下を要請
 - Single lepton trigger
 - ・ 少なくとも1つのprimary vertexから4つ以上の再構成されたtrackが出ている
 - p_T>25 GeV、もしくはE_T>25 GeVの レプトンを1つ
 - p₁>25 GeVのジェットを4つ以上
 - ・ 少なくとも2つのジェットが b-tagされている

Monte Carlo シミュレーション

- 陽子-陽子衝突事象
 - 衝突した陽子中に含まれるパートン同士が激しく相互作用する
 - 弾き出されたパートンからグルーオンが放出されて、パートンシャワーを形成していく
 - 激しく相互作用しなかったパートン同士が比較的低いエネルギースケール で相互作用する
 - パートンがハドロン化する。寿命の短いハドロンは崩壊する
 - ハドロンやレプトンが検出器と相互作用する

Renormalization scale & Factorization scale

- Renormalization scale (μ_R)
 - QCDの結合定数の強さを計算する際、繰り込みに使ったエネルギースケール
- Factorization scale (μ_F)
 - hard interactionとsoft interactionを分けるスケール。つまり、µ_F以上のエネル ギースケールでtree levelの計算が行われる

シミュレーションに用いたPDF

- Fixed targetやcolliderの実験データを使用
 - Electroproduction: electron, muon and neutrino deep-inelastic scattering data
 - Hadroproduction: Drell-Yan 事象やjet production のデータ
- パートンの分布を決定する
 際に使ったパラメターの種類
 などが違う
 - MSTW: three lightest quark flavours and anti-flavours and 28 free parameters of gluon
 - CTEQ and CT10: the two lightest flavours and antiflavours, the total strangeness, and the gluon. The number of the free parameter in CT10 is 26, and the number in CTEQ is 22.

MSTW 2008 NLO PDFs (68% C.L.)

MCサンプル一覧

- MCサンプルと、そのサンプルを作る際に使われたイベントジェネレーターと パートンシャワーシミュレーターの一覧
 - ttbar+jets: Powheg+Pythia
 - ・ ジェットのもととなったパートンのフレーバーにより分類
 - ttbar+b-jets、ttbar+c-jets、ttbar+light-jets
 - ttbar+V: Madgraph+Pythia
 - ttbar+H: Powhel+Pythia
 - Single top: Powheg+Pythia
 - W/Z+jets: Alpgen+Pythia
 - Diboson: Alpgen+Herwig
 - Charged Higgs: Powheg+Pythia
 - ・ 200 ~ 600 GeVの間の11個の質量点
- Normalizationは計算された生成断面積に合うように行われる
 - ただし、以下のサンプルは実験データやシミュレーションの分布に合うように行われる
 - ttbar+b-jets, ttbar+c-jets, ttbar+light-jets, W/Z+jets
- 系統誤差の評価のため、組み合わせを変えたサンプルも存在する

ttbar + jets process + reweighting

- ジェットのフレーバーによって分ける。Particle jetとクォークとの matchingをする(ΔR<0.4)
 - Top quark由来でないb-quarkから発生したジェットがあればttbar+b-jets
 - c-quark由来であれば、ttbar+c-jets
 - Light-quarksであれば、ttbar+light jets
- ttbar sequential Pt reweighting
 - Ttbar+c-jetsとttbar+Light-jetsに関してはデータの分布に合わせる
 - Reweightingのファクターは7 TeVのデータを用いたttbar differential cross section measurementの結果から導出した
 - Top Pt reweighting: MCとデータでjetのkinematicsの分布が合う
 - Ttbar Pt reweighting: MCとデータでjetとb-tagged jetの数の分布が合う
 - Ttbar Pt reweightingをかけてから、それに影響を与えないようにtop Pt reweightingをかけることで、jetのkinematicsと数の分布が合うようにする

ttbar differential cross section measurement at 7 TeV

ttbar+bb reweighting

- シミュレーションの分布にあわせる
 - powheg+pythiaではadditional jetがパートンシャワーシミュレーターによる計算の過程でしか出ないため、比較的運動量が小さい
 - ・ グルーオンからb-quarkがcollinearに近い形で分かれる過程が記述しづらい
 - NLO SHERPA with OPENLOOP を用いて、Matrix-element levelで記述され るような比較的高いエネルギーのグルーオン放出を評価
 - collinearに近い形で放出されるイベント(1つのparticle jetlに2つのb-quarkが マッチする)を記述できる
 - Reweightingに使う変数
 - top-quarkのPt
 - ttbar systemのPt
 - top-quark由来でない2つのジェットが作る系のPt
 - top-quark由来でない2つのジェット間の距離(ΔRjj)

SHERPA+OPENLOOPSサンプルのKinematicsの分布

Z/W+jets

- W/Z+jets Pt reweighting
 - LO generatorを使用しているため、高次のQCDやEWの相互作用の記述が難しい
 - W/Z bosonのPtの分布をデータに合うようにreweighting
 - 7 TeVのデータを使用
- Heavy Flavour overlap removal
 - Parton showerの発展によって生じたHeavy Flavour partonと generator levelで作ったHeavy Flavour partonとの区別を行う
 - Heavy Flavourのparton間の距離(ΔR)が0.4以上離れていれば、
 W/Z+Heavy Flavour jets。また、0.4以下であれば、W/Z+Light Flavour jetsとする

Z+jets production cross section measurement at 7 TeV

Figure 8. (a) Measured cross section for $Z(\to \ell\ell)$ + jets as a function of the transverse momentum of the Z candidate, $p_T^{\ell\ell}$, in events with at least one jet with $p_T^{\text{jet}} > 30$ GeV and $|y^{\text{jet}}| < 4.4$ in the final state and (b) as a function of $p_T^{\ell\ell}$ in events with exactly one jet. The cross sections are normalized to the inclusive $Z(\to \ell\ell)$ cross section. The other details are as in Figure 3.

• Matrix method:レプトンに対する質の要求を変えた時の本物と偽物のレプトンの数の変化を評価し、それを用いて偽物のレプトンからの寄与を見積もる

$$N^{L} = N^{L}_{fake} + N^{L}_{real}, \qquad \varepsilon_{r} = \frac{N^{T}_{real}}{N^{L}_{real}}, \qquad \varepsilon_{f} = \frac{N^{T}_{fake}}{N^{L}_{fake}}$$

$$N_{fake}^{T} = \frac{\varepsilon_{f}}{\varepsilon_{r} - \varepsilon_{f}} (\varepsilon_{r} N^{L} - N^{T})$$

• Efficiencyはレプトンの運動量やイベント中に含まれるb-jetの数などに 依存する。よって、efficiencyはそれらの変数の関数として記述される

$$\varepsilon_k(x_1, ..., x_N; y_1, ..., y_M) = \frac{1}{\varepsilon_k(x_1, ..., x_N)^{M-1}} \cdot \prod_{j=1}^M \varepsilon_k(x_1, ..., x_N; y_j).$$

x: discrete variables y: continuous variables

Fake lepton (event selection)

Process	Generator	PDF	Tune	Shower	Normalisation
tī	POWHEG	HERAPDF15NLO	P2011C	PYTHIA 6.427	NNLO+NNLL
t (t-channel)	AcerMC	CTEQ6L1	P2011C	PYTHIA 6.425	NLO+NNLL
t (s-,Wt-channel)	POWHEG	CT10	P2011C	PYTHIA 6.425	NLO+NNLL
tīWW+jets	MADGRAPH	CTEQ6L1	P2011C	PYTHIA 6.425	NLO
tīW/Z+jets	ALPGEN	CTEQ6L1	AUET2	HERWIG 6.520.2	NLO
W+jets	ALPGEN	CTEQ6L1	P2011C	PYTHIA 6.426	NNLO
Z+jets	ALPGEN	CTEQ6L1	P2011C	PYTHIA 6.426	NNLO
WW/WZ/ZZ	ALPGEN	CTEQ6L1	AUET2	HERWIG 6.520.2	NLO
di-jet	PYHTIA	CTEQ6L1	AU2	PYTHIA 8	LO

- Sampleをコントロール領域とシグナル領域に分ける
 - コントロール領域: fakeと real efficiencyを見積もる。
 - ・ Single lepton channelとdilepton channelに分ける
 - シグナル領域:validationとsystematicsの評価。Top-quarkを含むイベントが主。
 - Single lepton channelとdilepton channelに分ける
- Control region (dilepton channel): real efficiencyを引き出す
 - Tag-and-probe methodで使用したイベントセレクションと同じ
- Control region (single lepton channel): fake efficiencyを引き出す
 - Only one loose lepton and at least one jet
 - e channel: MTW < 20 GeV, MET+MTW < 60 GeV</p>
 - mu channel: |d_{0sig}|>5

 $d_0^{\rm sig} = d_0 / \sqrt{err(d_0)}$

Fake lepton (efficiency for e+jets)

Figure 5.4: Real efficiency ε_r and fake efficiency ε_f in e + jets channel as a function of the different variables and the trigger options. The variables are electron cluster eta $|\eta|^e$, electron transverse energy p_T^e , and minimum ΔR between electron and jets. e60 indicates high p_T trigger, e24vh indicates low p_T trigger without isolation cut, e24vhi indicates low p_T trigger with isolation cut.

51

	4j+2b	4j+3binc	5j+2b	6j+2b	5jinc+3binc
			Muons		
$t\bar{t}H$	18.9±0.1	9.0±0.1	24.8±0.2	38.9±0.2	50.7±0.2
$t\overline{t} + LJ$	43986.8±115.5	3447.1±31.7	21377.6±79.5	10657.3±54.9	3120.0 ± 30.0
$t\overline{t} + b\overline{b}$	960.1±17.1	355.3±10.6	841.3±16.3	767.6±15.6	1237.8 ± 24.1
$t\overline{t} + c\overline{c}$	2832.4±29.0	418.4±10.5	2459.3±26.7	2137.8±24.5	1001.8 ± 16.3
$t\overline{t} + V$	70.4±0.7	9.6±0.3	83.7±0.7	103.3±0.7	47.7±0.5
sg. top	2728.1±0.1	206.5±0.1	1092.1±0.2	464.5±0.2	180.7±0.2
Wboson +jets	2063.0±5.2	112.1±2.6	754.1±4.3	395.7±3.4	120.0 ± 4.5
Zboson +jets	494.8±11.3	26.8±7.7	123.3±7.5	51.3±5.9	8.8±8.4
VV	123.5±5.7	7.7±3.7	51.4±6.7	24.6±7.9	6.7±10.2
fake lep.	880.2±32.0	61.3±7.9	262.3±18.7	90.8±13.7	50.6±9.7
$H^{\pm}(200 \text{ GeV})$	212.9±5.0	62.8±3.0	134.9±3.7	85.5±3.0	152.1±4.0
$H^{\pm}(600 {\rm ~GeV})$	177.9±5.6	93.3±4.3	210.4±5.8	269.9±6.3	488.0±8.5
tot. MC	54158.3±125.3	4653.9±37.0	27069.9±88.1	14731.9±64.5	5824.9±45.1
tot. data	56682±238	5031±71	28599±169	14981±122	6764±82
			Electrons		
$t\overline{t}H$	15.1±0.1	7.2±0.1	20.0±0.2	30.0±0.2	39.8±0.2
$t\overline{t} + LJ$	36329.7±102.4	2846.0 ± 28.1	17339.6±69.7	8633.5±48.3	2541.2±26.3
$t\overline{t} + b\overline{b}$	757.9±14.7	310.2±9.8	707.9±15.1	618.5±13.9	1002.1±19.6
$t\overline{t} + c\overline{c}$	2371.2±25.9	322.0±9.1	2002.8±23.5	1696.9±21.2	838.4±14.5
$t\overline{t} + V$	57.6±0.6	8.1±0.2	67.2±0.6	85.6±0.7	38.0±0.4
sg. top	2288.0±0.1	160.6 ± 0.1	874.6±0.2	410.9±0.2	146.3 ± 0.2
Wboson +jets	1493.7±4.6	79.4±2.3	559.8±3.8	262.7±3.0	55.3±3.9
Zboson +jets	918.8±9.6	30.0±6.5	289.9±6.5	110.0 ± 4.7	41.5±7.0
VV	116.3 ± 5.0	3.7±3.4	59.2±5.9	29.0±6.8	7.9±8.7
fake lep.	1276.6±46.0	96.7±13.6	403.7±31.9	243.8±23.7	102.8±15.7
$H^{\pm}(200 \text{ GeV})$	170.3±4.3	49.6±2.6	110.1±3.3	66.9±2.5	116.6±3.4
$H^{\pm}(600 \text{ GeV})$	147.8±5.1	78.5±3.8	174.9±5.2	207.8±5.4	377.9±7.4
tot. MC	45625.0±116.8	3863.9±34.9	22324.8±82.1	12120.9 ± 60.1	4813.2±40.9
tot. data	45780±214	4071±64	22822±151	11967±109	5181±72
		4j+2b $t\bar{t}H$ 18.9±0.1 $t\bar{t} + LJ$ 43986.8±115.5 $t\bar{t} + b\bar{b}$ 960.1±17.1 $t\bar{t} + c\bar{c}$ 2832.4±29.0 $t\bar{t} + V$ 70.4±0.7 sg. top 2728.1±0.1 $Wboson + jets$ 2063.0±5.2 $Zboson + jets$ 494.8±11.3 VV 123.5±5.7 fake lep. 880.2±32.0 $H^{\pm}(200 \text{ GeV})$ 212.9±5.0 $H^{\pm}(600 \text{ GeV})$ 177.9±5.6 tot. MC 54158.3±125.3 tot. data 56682±238 $t\bar{t}H$ 15.1±0.1 $t\bar{t} + LJ$ 36329.7±102.4 $t\bar{t} + b\bar{b}$ 757.9±14.7 $t\bar{t} + c\bar{c}$ 2371.2±25.9 $t\bar{t} + V$ 57.6±0.6 sg. top 2288.0±0.1 Wboson +jets 918.8±9.6 VV 116.3±5.0 fake lep. 1276.6±46.0 $H^{\pm}(200 \text{ GeV})$ 170.3±4.3 $H^{\pm}(600 \text{ GeV})$ 147.8±5.1 tot. MC 45625.0±116.8 <tr< th=""><th>4j+2b4j+3binc$t\bar{t}H$18.9±0.19.0±0.1$t\bar{t}+LJ$43986.8±115.53447.1±31.7$t\bar{t}+b\bar{b}$960.1±17.1355.3±10.6$t\bar{t}+c\bar{c}$2832.4±29.0418.4±10.5$t\bar{t}+V$70.4±0.79.6±0.3sg. top2728.1±0.1206.5±0.1Wboson +jets2063.0±5.2112.1±2.6Zboson +jets494.8±11.326.8±7.7VV123.5±5.77.7±3.7fake lep.880.2±32.061.3±7.9H[±](200 GeV)212.9±5.062.8±3.0H[±](600 GeV)177.9±5.693.3±4.3tot. MC54158.3±125.34653.9±37.0tot. data56682±2385031±71$t\bar{t}+LJ$36329.7±102.42846.0±28.1$t\bar{t}+k\bar{c}$2371.2±25.9322.0±9.1$t\bar{t}+c\bar{c}$2371.2±25.9322.0±9.1$t\bar{t}+k\bar{c}$1493.7±4.679.4±2.3Zboson +jets918.8±9.630.0±6.5VV116.3±5.03.7±3.4fake lep.1276.6±46.096.7±13.6H[±](200 GeV)170.3±4.349.6±2.6H[±](600 GeV)147.8±5.178.5±3.8tot. MC45625.0±116.83863.9±34.9tot. MC45625.0±116.83863.9±34.9</th><th>4j+2b4j+3bincSj+2b$t\bar{t}H$18.9±0.19.0±0.124.8±0.2$t\bar{t}$ + LJ43986.8±115.53447.1±31.721377.6±79.5$t\bar{t}$ + $b\bar{b}$960.1±17.1355.3±10.6841.3±16.3$t\bar{t}$ + $c\bar{c}$2832.4±29.0418.4±10.52459.3±26.7$t\bar{t}$ + V70.4±0.79.6±0.383.7±0.7sg. top2728.1±0.1206.5±0.11092.1±0.2Wboson +jets2063.0±5.2112.1±2.6754.1±4.3Zboson +jets494.8±11.326.8±7.7123.3±7.5VV123.5±5.77.7±3.751.4±6.7fake lep.880.2±32.061.3±7.9262.3±18.7$H^{\pm}(200 \text{ GeV})$212.9±5.062.8±3.0134.9±3.7$H^{\pm}(600 \text{ GeV})$177.9±5.693.3±4.3210.4±5.8tot. MC54158.3±125.34653.9±37.027069.9±88.1tot. data56682±2385031±7128599±169$t\bar{t}$ + LJ36329.7±102.42846.0±28.117339.6±69.7$t\bar{t}$ + $b\bar{b}$757.9±14.7310.2±9.8707.9±15.1$t\bar{t}$ + $c\bar{c}$2371.2±25.9322.0±9.12002.8±23.5$t\bar{t}$ + V57.6±0.6$8.1\pm0.2$$67.2\pm0.6$sg. top2288.0±0.1160.6±0.1$874.6\pm0.2$Wboson +jets1493.7±4.679.4±2.3559.8±3.8Zboson +jets918.8±9.630.0±6.5289.9±6.5VV116.3±5.0$3.7\pm3.4$59.2±5.9fake lep.1276.6±46.096.7±13.6403.7±31.9$H^{\pm}(200 G$</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th></tr<>	4j+2b4j+3binc $t\bar{t}H$ 18.9±0.19.0±0.1 $t\bar{t}+LJ$ 43986.8±115.53447.1±31.7 $t\bar{t}+b\bar{b}$ 960.1±17.1355.3±10.6 $t\bar{t}+c\bar{c}$ 2832.4±29.0418.4±10.5 $t\bar{t}+V$ 70.4±0.79.6±0.3sg. top2728.1±0.1206.5±0.1Wboson +jets2063.0±5.2112.1±2.6Zboson +jets494.8±11.326.8±7.7VV123.5±5.77.7±3.7fake lep.880.2±32.061.3±7.9H [±] (200 GeV)212.9±5.062.8±3.0H [±] (600 GeV)177.9±5.693.3±4.3tot. MC54158.3±125.34653.9±37.0tot. data56682±2385031±71 $t\bar{t}+LJ$ 36329.7±102.42846.0±28.1 $t\bar{t}+k\bar{c}$ 2371.2±25.9322.0±9.1 $t\bar{t}+c\bar{c}$ 2371.2±25.9322.0±9.1 $t\bar{t}+k\bar{c}$ 1493.7±4.679.4±2.3Zboson +jets918.8±9.630.0±6.5VV116.3±5.03.7±3.4fake lep.1276.6±46.096.7±13.6H [±] (200 GeV)170.3±4.349.6±2.6H [±] (600 GeV)147.8±5.178.5±3.8tot. MC45625.0±116.83863.9±34.9tot. MC45625.0±116.83863.9±34.9	4j+2b4j+3bincSj+2b $t\bar{t}H$ 18.9±0.19.0±0.124.8±0.2 $t\bar{t}$ + LJ 43986.8±115.53447.1±31.721377.6±79.5 $t\bar{t}$ + $b\bar{b}$ 960.1±17.1355.3±10.6841.3±16.3 $t\bar{t}$ + $c\bar{c}$ 2832.4±29.0418.4±10.52459.3±26.7 $t\bar{t}$ + V 70.4±0.79.6±0.383.7±0.7sg. top2728.1±0.1206.5±0.11092.1±0.2Wboson +jets2063.0±5.2112.1±2.6754.1±4.3Zboson +jets494.8±11.326.8±7.7123.3±7.5VV123.5±5.77.7±3.751.4±6.7fake lep.880.2±32.061.3±7.9262.3±18.7 $H^{\pm}(200 \text{ GeV})$ 212.9±5.062.8±3.0134.9±3.7 $H^{\pm}(600 \text{ GeV})$ 177.9±5.693.3±4.3210.4±5.8tot. MC54158.3±125.34653.9±37.027069.9±88.1tot. data56682±2385031±7128599±169 $t\bar{t}$ + LJ 36329.7±102.42846.0±28.117339.6±69.7 $t\bar{t}$ + $b\bar{b}$ 757.9±14.7310.2±9.8707.9±15.1 $t\bar{t}$ + $c\bar{c}$ 2371.2±25.9322.0±9.12002.8±23.5 $t\bar{t}$ + V 57.6±0.6 8.1 ± 0.2 67.2 ± 0.6 sg. top2288.0±0.1160.6±0.1 874.6 ± 0.2 Wboson +jets1493.7±4.679.4±2.3559.8±3.8Zboson +jets918.8±9.630.0±6.5289.9±6.5VV116.3±5.0 3.7 ± 3.4 59.2±5.9fake lep.1276.6±46.096.7±13.6403.7±31.9 $H^{\pm}(200 G$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

5i+2h

6i+2b

各領域のイベント数

52/41

一番右の シグナル領 左の4つの コントロー 域

ttbar+Hea Flavour jet ttbar+Ligh Flavour Je な背景事業

多変数解析 (Boosted Decision Trees)

- 条件をかけて取捨選択

 信号事象と背景事象をきれいに分ける変数がない
 背景事象と共に信号事象も捨ててしまう可能性が高い

 BDTによる信号事象と背景事象の分離

 いくつかの変数を入力することで、背景事象と信号事 象の分離を向上
 全ての事象を有効的に利用することができる

 Decision Tree アルゴリズム

 背景事象と信号事象が混ざったサンプルを一番分離できる 変数を用いて分ける。この作業を分けたサンプルに対して再び行っていく
 全ての事象がbackground-likeとsignal-likeの領域に分けられる。それぞれの領域 中のイベントに対して重みが与えられ、その結果が出力として得られる

 Boosting

 間違って分けられた事象のことも考慮して、新たにDecision Treeを作る。この作業 を繰り返し、大量のDecision Treeを作る。それらの出力の平均値を採用する
 - Training
 - MCサンプルを用いて、背景事象と信号事象の分離を最適化しておく

Fox-Wolfram moment

The second Fox-Wolfram moment is calculated from the selected jets [119]. Fox-Wolfram moments represent geometric correlations between jets. They are based on a superposition of spherical harmonics, $Y_l^m(\theta, \phi)$, where θ and ϕ are the polar angle and the azimuth angle, respectively. They are defined by

$$H_l \equiv \left(\frac{4\pi}{2l+1}\right) \sum_{m=-l}^{l} \left|\sum_{i=1}^{N} Y_l^m(\Omega_i) \frac{\left|\vec{\mathbf{p}}_i\right|}{\sqrt{s}}\right|^2$$
(5.13)

$$= \sum_{i,j=1}^{N} \frac{|\vec{\mathbf{p}}_{i}||\vec{\mathbf{p}}_{j}|}{s} P_{l}(\cos \Omega_{ij}), \qquad (5.14)$$

where the index *i* runs over all final state objects which can be defined anywhere at the detector or jet level, N is the number of the final state objects, Ω is the solid angle, p_i is the momentum of an object *i*, and \sqrt{s} is the energy of all states *i*. The $P_l(\cos \Omega_{ij})$ is the Legendre polynomials and the $\cos \Omega_{ij}$ is defined by

$$\cos\Omega_{ij} = \cos\theta_i \cos\theta_j + \sin\theta_i \theta_j \cos(\phi_i - \phi_j). \tag{5.15}$$

The second Fox-Wolfram moment indicates H_l with l = 2.

Control plot (pre-fit 2)

Control plot (pre-fit 3)

• Leading jet pt (4j2b, 4j3b, 5j2b, 6j2b)

BDT input variable (prefit signal region)

系統誤差

- 系統誤差が測定された変数に与える影響
 - イベント数
 - 変数の分布の形
- 100個近くの系統誤差
 - 検出器由来:ジェットのエネルギースケール、ルミノシティーの測定など
 - 理論由来:生成断面積、パートンシャワーシミュレーターの違いなど
- 系統誤差は信号事象に対する感度に影響を与える
- それぞれの系統誤差の信号強度µに対する影響の割合
 - ttbar+jets事象に関する系統誤差の割合が一番大きい

Source of uncertainty	Fractional uncertainty %		
	$m_{H^\pm}=300~{\rm GeV}$	$m_{H^\pm}=500~{\rm GeV}$	
$t\bar{t}$ modelling	31	33	
Jets	21	9.5	
Flavour tagging	19	24	
Other background modeling	9.6	12	
Signal modeling	8.0	3.5	
Lepton	1.2	0	
Luminosity	1.1	0.4	
Statistics	8.9	18	

検出器由来の系統誤差1

- Luminosity measurement
 - μ_{vis}の測定に使われたアルゴリズムやσ_{vis}の測定の際の状況などが原因
 - Beam condition
 - Aftergrow(原子核の脱励起から発生した光子)
 - Hard radiationによる検出器の劣化 など
- Lepton object
 - Trigger やIDに対するefficiency、エネルギースケールの較正やその分解能、 isolationなどに由来
- Jet object
 - Jet Energy Scaleやb-jet energy scaleの較正、Jet Energy Resolution、JVF cut、 Jet reconstruction efficiencyなどに由来
- Flavour tagging
 - b-tag efficiencyの較正に由来。c-flavour jetやlight flavour jetのmistagによる 影響も考慮。High jet pt領域までのefficiencyの外挿による系統誤差も考慮

理論由来の系統誤差

- Ttbar+V
 - 生成断面積とmodeling(initial state radiationの寄与)に関する誤差
 - 生成断面積に対しては±30%
- Single top
 - 生成断面積とNLO levelにおけるttbarとWt過程の干渉に関する誤差。
 - ・ 生成断面積に対しては+5/-4%
- V+jets
 - 生成断面積とreweighting に関する誤差
 - Jetの数が一つ増えるごとに24%の誤差が加わる。これはLOのジェネレー ターとシャワーをmergeする際にα、を計算し直すことで生じる誤差である
- Diboson
- ttH
 - 生成断面積に関する誤差。+8.9/-12%
- Charged Higgs
 - 異なるGeneratorやPDFを用いて、signal acceptanceやmodelingの違いを評価
 - PDFに関してはPDF4LHCを使用した(次のページで説明)。Charged Higgsのmass 領域において、5~10%の誤差が生じた。

61

ttbar由来の系統誤差

- Cross section: +6.5/-6 %(inclusive)
 - Ttbar+b-jets, ttbar+c-jets: ±50 %
- ttbar sequential Pt reweighting: 合計で9個
 - ISRFSR, Fragmentation, MCgenerator, JER, bJES, jet eta calibration, closebyjet, JES calibration, b-tag efficiency
- ttbar+b-jet sharp: 合計で8個 (7+1)
 - Reweighting: CSS_KIN(shower recoil model), MSTW, NNPDF,
 Q_CMMPS(resummation scale), R_Mbb(Factrisation scale unc), default05(scale unc), default2(scale unc),
 - Multiple Parton Interaction and Final State Radiation (by using Madgraph)
- Generator
 - Madgraph (renormalization scale, paton jet matching model, c-quark mass)
 - Parton shower
 - HERWIG
 - PDF: PDF4LHC
 - NLO levelでのPDFのset(MSTW, CT10, NNPDF)
 - α_sの不確定性を評価する際にMSTWにおける68% CLに対応する幅を基準 としている

ttbar+b-jets由来の系統誤差

default

Scale

- 右図:SHERPA NLOの系統誤差の評価に使われたパラメーター
- Renormalization scale (µ_R):QCD の結合定数の計算に使われる scale
- Resummation scale (µ_q): generatorとparton showerをくっ つける際に、shower simulator が始まるscale
- $\mu_{\rm R}$ $\mu_{\rm CMMPS}$ $\mu_{\rm CMMPS}$ $(m_{\rm t}m_{\rm b\bar{b}})^{1/2}$ $\mu_{\rm F}$ $H_{T,t}/2$ $H_{T,t}/2$ $H_{T,t}/2$ μ_Q $H_{T,t}/2$ $\mu_{\rm CMMPS}$ $H_{T,t}/2$

Q-CMMPS

R-Mbb

63

- CMMPS: $\mu_{\mathrm{R}}^4 = \prod_{i=\mathrm{t},\bar{\mathrm{t}},\mathrm{b},\bar{\mathrm{b}}} E_{\mathrm{T},i} = \prod_{i=\mathrm{t},\bar{\mathrm{t}},\mathrm{b},\bar{\mathrm{b}}} \sqrt{m_i^2 + p_{\mathrm{T},i}^2}$
- SHERPA NLOで評価できない系統誤差 はMADGRAPHを用いて評価
 - tbar+jets event with bb arising from Multi Parton Interaction
 - gluon → bb radiated from top decay products

Fake leptonの系統誤差

- Fake leptonの全体のイベント数に関して50%のuncertainty
 - Charged Higgs解析ではたくさんのジェットやb-tagを要求しているため、
 データ数が少なくなり、不確定性が大きくなる
- Real efficiencyとfake efficiencyにつく誤差からの影響
 - Efficiencyを見積もる際に使ったMCサンプルの分布の変化
 - validationの際に使ったsignal regionにおける背景事象の違い
 - Efficiencyの変数依存性
- まったく違うカットをかけることで代わりとなるようなコントロール領域を作り、それを使ってfake efficiencyを見積もる
 - Muon channelに関して MTW < 20 GeV や MTW+MET < 60 GeV の カットをかける等
- 代わりとなる方法を用いて、signal regionからreal efficiencyを 見積もる
 - MTW > 100 GeVなどを要求して、ttbar のdilepton崩壊事象を使う

信号過程の系統誤差

- Scale variation: renormalisationとfactorisationのスケールの変化
- Generator variation : POWHEGとMADGRAPH5 AMCatNLOの比較
- PDF uncertainty: NLOのPDFデータセット間での比較
 MSTW2008 68% CL NLO, CT10 NLO, NNPDF2.3 NLO
- ・ 左図:各質量点ごとのscale variationによる信号事象のイベント数の変化。ここではスケールを2倍にした時の値を示している。
- 右図:各質量点ごとのPDF uncertaintyによる信号事象のイベント数の変化。

4FSと5FSの違い:実際には大きな系統誤差が付くが、理論グループとの議論やCMS実験の結果にその系統誤差が入っていないなどを考慮して、Run 1の結果ではつけていない

信号事象からの寄与の見積もり

ある信号強度µを仮定した場合の尤度関数の分布と、データから見積もったµに基づいた尤度関数の違いから寄与を見積もる

 $\lambda(\mu) = \frac{L(\mu, \hat{\hat{\theta}})}{L(\hat{\mu}, \hat{\theta})} \quad \begin{array}{l} L(\mu, \hat{\hat{\theta}}): \delta a_{\mu} \delta c_{\mu} c_{$

・ 尤度関数の記述: コントロール領域とシグナル領域におけるビンごとの変数の確率分布、各系統誤差の確率分布の掛け合わせ

 コントロール領域ではHadronic Ht、シグナル領域ではBDTの出力に対して 同時にフィッティングを行う

p-value

- 想定した仮説によって説明できる分布から、どれだけデータが離れているか を示す量
- ある仮説の値µを想定した時のtest statistics value t_nを以下のように定義する
 - $t_{\mu} = -2\ln\lambda(\mu).$ ・ 想定したµとデータの分布が近い=t_µ → 0
 - 想定したµとデータの分布が遠い=t_µ → ∞
- p-valueは測定されたデータから見積もったt_{µobs}と想定した仮説が説明するt_µの分布のズレを評価した値

$$p_{\mu} = \int_{t_{\mu,\text{obs}}}^{\infty} f(t_{\mu}|\mu) dt_{\mu},$$

- p-valueはCLIに対応した値であるαと
 比較されることが多い
 - $\alpha = (100-CL)/100$
 - p_µ<α ならばそのµは棄却

- 系統誤差に対するフィッティングの影響
- フィッティングの前後で系統誤差の分布が変わる
- ・ 左図はm_{H+}=300 GeV、右図はm_{H+}=500 GeVを仮定
 - 青い棒グラフ: 各系統誤差が測定されたµに与える変動の大きさ
 - 黒点: フィッティング前後の分布の平均値の変動の大きさをΔθで評価した分布
 - ・ θ_0 = pre-fit時の平均値、 $\hat{\theta}$ = post-fit時の平均値
 - Pre-fitでの系統誤差の標準偏差(Δθ)が許す範囲で動く
 - ・ 誤差棒はpost-fit時の標準偏差の大きさを示す

信号強度との相関図

tt rw: generator	2	-9	-23	%
tt+bb: cross section	-50	-33	-11	²⁰ ĝ
tt+bb rw: renorm. scale function	26	-21	-17	10 +
Multi-jets: fake method	-30	10	6	K(H
tt+bb: parton shower	-22	19	-1	_0 ¤
H ⁺ : generator	-38	-2	-4	$-10^{\frac{1}{10}}$
c-tagging: 4th component	23	9	3	T T
c-tagging: 3rd component	13	-27	-10	
b-tagging: 6th component	-10	-2	-37	-30 -
b-tagging: 5th component	20	0	-22	wit of
Jets: JesEffectiveModel1	28	-4	-1	<u>-40 </u> <u>5</u>
Jets: EtaIntercalibrationModel	-28	15	9	elat
	200	400	600	
ATLAS √s=8 TeV, 20.3 fb ⁻¹			m _{H⁺} [GeV]	ŏ

69

Post-fit plot (Control region, Hadronic Ht)

Post-fit plot (Control region, BDT output, mH+=300 GeV)

Post-fit plot (Signal region, Hadronic Ht)

CLs method

74

- ・ 背景事象の揺らぎが偶然大きく下向きに動いてしまう場合

 信号事象+背景事象(下向きの揺らぎ) < 背景事象(平均値) と

 - なり、厳しすぎる上限値を見積もってしまう可能性がある
- CLs method: p-valueを正規化して評価する

$$- CLs = p_{s+b} / (1 - p_b)$$

$$p_{b} = \int_{-\infty}^{q_{obs}} f(q|b) dq = \Phi\left(\frac{q_{obs} - (1/\sigma_{b})}{(2/\sigma_{b})}\right),$$

$$p_{s+b} = \int_{q_{obs}}^{\infty} f(q|s+b) dq = 1 - \Phi\left(\frac{q_{obs} + (1/\sigma_{s+b})}{(2/\sigma_{s+b})}\right),$$

* qlはL_{s+b}とL_bの比から計算される

$$q = -2\ln\frac{L(\mu = 1, \hat{\theta}(1))/L(\hat{\mu}, \hat{\theta})}{L(\mu = 0, \hat{\hat{\theta}}(0))/L(\hat{\mu}, \hat{\theta})} = -2\ln\lambda(1) + 2\ln\lambda(0).$$

ATLAS実験での荷電ヒッグス粒子探索

- H⁺→τv崩壊チャンネルとH⁺→tb崩壊チャンネルがある
- ・ 重い荷電ヒッグス粒子の場合、H⁺→tb崩壊チャンネルの方が 有利
 - 荷電ヒッグス粒子の質量が180 GeV 以下: τv崩壊チャンネルが優勢
 - 荷電ヒッグス粒子の質量が180 GeV 以上: tb崩壊チャンネルが優勢

Figure 7.4: Cross section limit for the production cross section, $\sigma(pp \rightarrow tH^+) \times \text{BR}(H^+ \rightarrow \tau^+\nu)$, from ATLAS charged Higgs analysis at $\sqrt{8}$ TeV.

Figure 7.5: Cross section limit for the production cross section, $\sigma(pp \rightarrow tH^+) \times BR(H^+ \rightarrow tb)$, including the expected limit without systematics uncertainty.

ATLASとCMS実験での荷電ヒッグス粒子探索 (tb崩壊チャンネル、Run 1 result)

- ATLAS実験
 - Single leptonチャンネルのみ
 - 主な背景事象であるttbar+jets過程を三つのカテゴリーに分けている
 - ttbar+b-jets, ttbar+c-jets, ttbar+light-flavour-jets
 - 実験データを使ったreweightingを行ったり、系統誤差をより細かく評価したり、複雑なことをやっている
- CMS実験
 - Single leptonチャンネル、di-lepton(てレプトンは除く)チャンネルとµて_{had}チャンネルの三つ
 - µt_{had}チャンネルでは二つのtop-quarkがレプトニックに崩壊し、片方がW→µv、 もう片方がW→t_{had}vに崩壊する
 - ttbar+jets過程を分けたり、実験データを用いたreweightingなどは行っていない

CMS result

Figure 7.6: Cross section limit for the production cross section, $\sigma(pp \rightarrow \bar{t}(b)H^+) \times \text{Br}(H^+ \rightarrow tb)$, in semileptonic channel for charged Higgs bosons at $\sqrt{8}$ TeV at CMS.

Figure 7.7: Cross section limit for the production cross section, $\sigma(pp \rightarrow \bar{t}H^+) \times BR(H^+ \rightarrow tb)$, in combined channels for charged Higgs bosons at $\sqrt{8}$ TeV at CMS.

77

78

ATLAS実験とCMS実験の比較

• Expected Limitの比較

Table 7.1: Comparison of expected 95 % CL limits on $\sigma(pp \rightarrow tH^+) \times BR(H^+ \rightarrow tb)$ between ATLAS and CMS.

m_{H^+} [GeV]	Expected limit from ATLAS [pb]	Approximately expected limit from CMS [pb]
200	3.78	2.00
250	1.98	1.20
300	1.44	0.80
350	0.96	0.60
400	0.64	0.50
450	0.45	0.40
500	0.40	0.30
550	0.31	0.25
600	0.25	0.20

・ Observed Limitの比較(200 GeVと600 GeV)

- ATLAS実験
 - ・ m_{H+}=200 GeVにおいて6.28 pb、m_{H+}=600 GeVにおいて0.24 pb
- CMS実験
 - m_{H+}=200 GeVにおいて2.2 pb、m_{H+}=600 GeVにおいて0.15 pb

新しいベンチマークシナリオ(1)

Figure 18: Expectations for the 2σ sensitivity in the hMSSM $[\tan\beta, M_A]$ plane when the searches for the $A/H/H^{\pm}$ states in all channels, including the $gg \to H/A \to tt$ process, are combined at the LHC with $\sqrt{s} = 8$ TeV and 25 fb⁻¹ data.

Figure 19: The same as in Fig. 19 but at the LHC with $\sqrt{s} = 14$ TeV and 300 fb⁻¹ data.