Azimuthal anisotropy in CuAu collisions at RHIC-PHENIX

Hiroshi Nakagomi
Univ. of Tsukuba

Azimuthla anisotropy:Elliptic \& triangular flow

\checkmark Initial spatial anisotropy $\varepsilon_{n}->$ Final momentum anisotropy v_{n}

- Converted through hydrodynamic expansion
$\checkmark \mathrm{v}_{2}, \mathrm{v}_{3}$ are sensitive to initial condition and viscosity of QGP
- Theoretically, initial condition and viscosity have uncertainty

Longitudinal structure

Initial geometry/density
$\operatorname{arXiv}: 12004.5814 \mathrm{v} 2 \mathrm{n}_{\mathrm{s}}-\mathrm{x}$ plane

\checkmark Similar geometry at whole η -Almost rapidity independent -Used in most models
\checkmark Density decrease at higher rapidity

Final momentum anisotropy

\checkmark Trapezoidal rapidity dependence

- At higher rapidity, smaller energy density makes smaller v_{2}

Longitudinal flow fluctuation ?

\checkmark CMS observed flow fluctuation at forward/backward rapidity 2-pc $C\left(\eta_{a}, \eta_{b}, \Delta \phi\right)=1+2 \sum V_{n \Delta}\left(\eta_{a}, \eta_{b}\right) \cos (n \Delta \phi)$

$$
\begin{aligned}
r_{n}\left(\eta_{a}, \eta_{b}\right) & =\frac{V_{n \Delta}\left(-\eta_{a}, \eta_{b}\right)}{V_{n \Delta}\left(\eta_{a}, \eta_{b}\right)} \\
& =\frac{\left\langle v_{n}\left(-\eta_{a}\right) v_{n}\left(\eta_{b}\right) \cos \left(n\left[\Psi_{n}\left(-\eta_{a}\right)-\Psi_{n}\left(\eta_{b}\right)\right]\right)\right\rangle}{\left\langle v_{n}\left(\eta_{a}\right) v_{n}\left(\eta_{b}\right) \cos \left(n\left[\Psi_{n}\left(\eta_{a}\right)-\Psi_{n}\left(\eta_{b}\right)\right]\right)\right\rangle}
\end{aligned}
$$

$$
v_{n \Delta}\left(\eta^{a}, \eta^{b}\right)
$$

Phys. Rev. C 92034911

- $r_{n}=1 \rightarrow$ No flow fluctuation
$-V_{n}\left(\eta_{a}\right)=V_{n}\left(-\eta_{a}\right) \& \Psi_{n}\left(\eta_{a}\right)=\Psi_{n}\left(-\eta_{a}\right)=\Psi_{n}\left(\eta_{b}\right)$
$\bullet^{-} r_{n}<1 \rightarrow$ F/B flow fluctuation
$-V_{n}\left(\eta_{a}\right) \neq V_{n}\left(-\eta_{a}\right) \quad: \varepsilon_{n}\left(\eta_{a}\right) \neq \varepsilon_{n}\left(-\eta_{a}\right)$
$-\Psi_{n}\left(\eta_{a}\right) \neq \Psi_{n}\left(-\eta_{a}\right) \neq \Psi_{n}\left(\eta_{b}\right)$: Twisted $\Psi_{n}(\eta)$

$\mathrm{Cu}+\mathrm{Au}$ collisions

Collision picture
Initial spatial anisotropy: ε_{2}

$\sqrt{ }$ First asymmetric Cu+Au collisions were operated in 2012
\checkmark Asymmetric initial condition provides
-Different Forward/Backward density and geometry
-> Rapidity asymmetric v_{n}
-> Measurements of v_{n} in asymmetric system could be good study of longitudinal structure

Result: η dependence of $d N / d \eta$ and v_{n}

\checkmark Au-going $\mathrm{dN} / \mathrm{d} \mathrm{\eta}>\mathrm{Cu}$-going $\mathrm{dN} / \mathrm{d} \mathrm{\eta}$ in Cu+Au collisions
$-\mathrm{N}_{\text {part,Au }}>\mathrm{N}_{\text {part, } \mathrm{Cu}}$
\rightarrow Larger initial density in Au-going side
\checkmark Au-going $v_{n}>C u-g o i n g v_{n}$ in Cu+Au collisions
-Assume rapidity independent event plane
$-\varepsilon_{\mathrm{n}, \mathrm{Au}}>\varepsilon_{\mathrm{n}, \mathrm{Cu}}, \quad N_{\text {part,Au }}>\mathrm{N}_{\text {part,Cu }}$
\rightarrow Asymmetry of v_{n} is caused by geometry or energy density or both

Result:Mid- $\eta \mathrm{V}_{\mathrm{n}}$

$\checkmark \mathrm{V}_{\mathrm{n}}$ is plotted as function of mid-rapidity $\mathrm{dN} / \mathrm{dn}(\propto$ energy density)
$-v_{n} \propto \varepsilon_{n}$, energy density

- At same $\mathrm{dN} / \mathrm{d} \mathrm{\eta}$ bin, the similar pressure gradient is expected.
$\checkmark \mathrm{v}_{2}$ in $\mathrm{Cu}+\mathrm{Au}$ collisions is always between those in $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ \checkmark Unlike $v_{2}, C u+A u v_{3}$ is consistent with $\mathrm{Au}+\mathrm{Au} \mathrm{v}_{3}$

Result:Study of mid- η initial geometry

$\checkmark \mathrm{Cu}+\mathrm{Au} v_{2} / \varepsilon_{2}$ is consistent with $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ results
$\rightarrow \mathrm{MC}$-Glauber reproduce ε_{2} well
$\checkmark \mathrm{Cu}+\mathrm{A} v_{3} / \varepsilon_{3}$ is not consistent with $A u+A u$ results $\rightarrow \mathrm{MC}$-Glauber might not reproduce ε_{3} correctly

Result:F/B- ηv_{n}

$\checkmark v_{n}$ is plotted as function of f / b-rapidity $d N / d \eta$

- Au-going dN/dn > Cu-going dN/dn
\checkmark Au-going side shows larger v_{n} than Cu-going side
\rightarrow Caused by difference of initial geometries between Au and Cu ?

Result:Study of f/b- η initial geometry for 2nd harmonics

\checkmark Failed to scaled with rapidity dependence of ε_{2}
\checkmark common $\varepsilon_{2, \text { Au-going }}=\varepsilon_{2, \text { Cu-going }}$ is favored
$-\mathrm{F} / \mathrm{B}$ asymmetry is caused by $\mathrm{dN} / \mathrm{dn}$ (initial energy density)

Result:Study of f/b- η initial geometry for 3rd harmonics

\checkmark common $\varepsilon_{3, \text { Au-going }}=\varepsilon_{3, \text { Cu-going }}$ is favored
$-\mathrm{F} / \mathrm{B}$ asymmetry is caused by $\mathrm{dN} / \mathrm{dn}$ (initial energy density)
\checkmark Like mid-rapidity v_{3}, MC-Glauber can not describe system size dependence?

Summary

By studying azimuthal anisotropy in $\mathrm{Cu}+\mathrm{Au}$ collisions,
\checkmark Initial geometry at Forward/Backward is common between $-4<\eta<+4$
\checkmark F/B asymmetry of vn is caused by F/B asymmetry of initial density
\checkmark MC-glauber does not describe ε_{3} well

Result:Study of f/b- η initial density

\checkmark Weighted $\mathrm{N}_{\text {part }}$ Scaling for CuAu dN/dn
$-\mathrm{N}_{\text {part,Au(Cu)-going }}=\mathrm{w} \mathrm{N}_{\text {part,Au }}+(2-\mathrm{w}) \mathrm{N}_{\text {part,Cu }} \quad\left(2 \mathrm{~N}_{\text {part,Cu }}<\mathrm{N}_{\text {part,Au(Cu)-going }}<2 \mathrm{~N}_{\text {part,Au }}\right)$

- $\mathrm{N}_{\text {part,Au }}$ and $\mathrm{N}_{\text {part,Cu }}$ are participants in Au and Cu , respectively
\checkmark Au-going side -> $\mathrm{N}_{\text {part,Au }}$ and $\mathrm{N}_{\text {part,Cu }}$, Cu-going side -> $\mathrm{N}_{\text {part,Cu }}$

Azimuthal anisotropy:elliptic flow

converted though hydrodynamic expansion

Momentum anisotropy: v_{2}

\checkmark Initial spatial anisotropy $\varepsilon_{2}->$ Final momentum anisotropy v_{2}

- Non-isotropic pressure gradient
\checkmark Azimuthal anisotropy is strong probe!
- Clear origin -> initial spatial geometry
- Influenced by hydrodynamic expansion

Theory prediction of F/B asymmetry of ε_{n} and v_{n}

Initial geometry

Final momentum anisotropy V_{2}

\checkmark Event by event, forward/backward v_{n} might be asymmetric

- initial participant geometries of the two nuclei would be different
- Rapidity independent participant plane for ε_{n} and v_{n}
$-\varepsilon_{n, B}<\varepsilon_{n, F} \quad v_{n, B}<v_{n, F}$
\Rightarrow Initial geometry has strong rapidity dependence

Event plane method

Event plane(EP) method

- one of the flow measurement methods
- produced particles are measured with respect to EP
- EP is the azimuthal direction most particles are emitted to
- observed v_{n} is corrected by EP resolution

$$
v_{n}=\frac{<\cos \left(n\left[\phi-\Psi_{n}^{o b s}\right]\right)>}{\operatorname{Res}\left\{\Psi_{\mathrm{n}}^{\mathrm{obs}}\right\}}
$$

Elliptic moment

ع2 at F/B rapidity

ع3 at F/B rapidity

عn at mid-rapidity

Initial model dependence

