Forward Calorimeter upgrade in ALICE

Tatsuya Chujo Univ. of Tsukuba

Jan. 24, 2017 CiRfSE workshop 2017

Univ. of Tsukuba, Tsukuba

Outline

- **1. Physics motivations**
- 2. Forward Calorimeter Project in ALICE
 - Detector design, organization
 - MAPS detector
 - PAD detector
- 3. Schedule
- 4. Summary

Gluon Density in nucleon/ nuclear at high energy

At small x and small Q², the parton density will become large by non-linear effects due to gluon fusion Gluon density saturate, called; Gluon Saturation, or Color Glass Condensate (CGC)

3 quarks

CGC

Color Glass Condensate (CGC)

- Saturated gluon state by the quantum fluctuation
 Universal picture at high energy nucleus and nucleon
- ③ But no clear experimental evidence for the creation of CGC
- To find/ test CGC by experiment...
 - (1) more forward
 - (2) Higher energy
 - (3) proton < nucleus
 - (4) cleanness: h < gamma

$$x_{\min} = \frac{2p_T}{\sqrt{s}} \exp(-\eta),$$

- **1. High particle flux at forward region**
- 2. Difficult to measure direct photon at forward

But...

Measurement is possible by Si technics (CMOS-MAPS, PAD) !

Signal of CGC: R_{pA}

Two scenarios for forward γ production in p+A at LHC:

- Normal nuclear effects linear evolution, shadowing
- Saturation/CGC running coupling BK evolution

$$R_{pA} \equiv rac{d^3N/dp_T^3(pA)}{\langle N_{coll}
angle \cdot d^3N/dp_T^3(pp)},$$

- Strong suppression in direct γ R_{pA}.
- Signals expected at forward η , low-intermediate p_T .

QGP thermalization mechanism

- Why so rapidly thermalized (t=0.6 fm/c)?
 - Instability of strong color field ? \rightarrow need to determine

the initial condition clearly.

Find the clear evidence for CGC formation as an initial condition (or exclude it).

nine al QGP rapid thermalization?

Long range correlations in AA and pA ("Ridge")

- long range $\Delta \eta$ correlations (ridge) at RHIC and LHC.
- Origin is still unknown.
- by CGC (initial condition) or others?

photons vs. charm: D⁰ meson (LHCb)

R_{pPb} for **D**⁰ (LHCb)

Isolated photons vs. hadrons

Isolated direct photons can provide strong constraints on the gluon PDFs

- LO dominant process: quarkgluon Compton.
- Quark-anti-quark annihilation contributing mostly at large x.
- NLO: At LHC, the majority of prompt photons are produced in the fragmentation process
- Fragmentation photon can be largely suppressed by the isolation cut.
- →quark-gluon Compton process dominant, more direct access to the gluon PDFs and saturation physics

by T. Peitzmann 10

High density gluon matter ↔ Hot Quark Matter A. Rezaeian, PLB 718, 1058

1 Evidence for CGC

- direct photon = most clean signal for CGC
- Forward direct photon: $R_{pA} \rightarrow CGC$ or not.

2 Nature of CGC

• Direct photon R_{pA} : system, multiplicity, y & p_T dep.

 \rightarrow characterize CGC size, structure, onset.

3CGC and QGP thermalization mechanism

- Size of CGC (direct photon) and QGP temperature, expansion velocity, fluctuation.
- Forward photon /hadron vs. mid. photon / hadron

correlation between CGC size and

QGP thermalization (e-by-e)

 \rightarrow Mechanism of rapid thermalization

④ Connection to other research fields

- ^rstrong field」: QCD color (gluon) field vs. QED field (Neutron star)
- ^rforward」 : High energy cosmic rays

ALICE FoCal Project

- p+Pb: looking for CGC effects at low x
 - Direct photons
 - pi0
 - di-hadron correlations
- p+p: forward particle production
 - Direct photons
 - pi0
 - di-hadron correlations
- Pb+Pb: medium density at fwd rapidity
 - pi0 at 4 < eta < 4.5
 - · Handle on longitudinal evolution of medium
 - Provide light meson baseline for J/psi, muon suppression
 - di-hadron correlations (TBC)

plus other capabilities: quarkonia, jets, mostly in p, p+Pb

3.2 < η < 5.3

Kinematic reach by FoCal

x-Q ranges for photons and DIS

Forward measurements at LHC access unique range in x, Q²

Remark hadronic probes

Projected uncertainty for direct γ R_{pPb}

FoCal can measure direct photons in this range

Cleanest probe of PDFs

p0, eta, omega as well....

FoCal-E prototypes

- Si/W sandwich calorimeter layer structure:
 - W absorbers (thickness 1X₀)+ Si sensors
- Longitudinal segmentation:
 - 4 segments low granularity (LG)
 - 2 segments high granularity (HG)

• LG segments

- 4 (or 5) layers
- Si-pad with analog readout
- cell size 1 x 1 cm²
- longitudinally summed

• HG segments

- single layer
- CMOS-pixel (MAPS*)
- pixel size $\approx 25~x~25~\mu m^2$
- digitally summed in 1mm² cells

FoCal project (Institutes)

Short Name	Full Name	Representative
Amsterdam	Nikhef, Amsterdam, Netherlands	M. van Leeuwen
BARC	Bhaba Atomic Research Centre, Mumbai, India	V.B. Chandratre
Bergen	University of Bergen, Bergen, Norway	D. Roehrich
Bose	Bose Institute, Kolkata, India	S. Das
Detroit	Wayne State University, Detroit, USA	J. Putschke
Hiroshima	Hiroshima University, Hiroshima, Japan	T. Sugitate
IITB	Indian Institute of Technology Bombay, Mumbai, India	R. Varma
Indore	Indian Institute of Technology Bombay, Indore, India	R. Sahoo
Jammu	Jammu University, Jammu, India	A. Bhasin
Jyväskylä	University of Jyväskylä, Jyväskylä, Finland	J. Rak
Knoxville	University of Tennessee, Knoxville, USA	K. Read
Nagasaki	Nagasaki Inst. of Applied Science, Nagasaki, Japan	K. Oyama
Nara§	Nara Women's University, Nara, Japan	M. Shimomura
Oak Ridge	Oak Ridge National Laboratory (ORNL), Oak Ridge, USA	T. Cormier
Prague	Czech Technical University of Prague, Prague, Czech Republic	V. Petracek
Sao Paulo	Universidade de Sao Paulo (USP), Sao Paulo, Brazil	M. Munhoz
Tokyo	Center of Nuclear Study (CNS), Tokyo, Japan	T. Gunji
Tsukuba	University of Tsukuba	T. Chujo
Tsukuba Tech	Tsukuba University of Technology	M. Inaba
Utrecht	Utrecht University, Utrecht, Netherlands	T. Peitzmann
VECC	Variable Energy Cyclotron Centre, Kolkata, India	T. Nayak

High Granularity (HG) Prototype, MAPS

MAPS prototype

- 4x4 cm² cross section, 28 X₀ depth
- 24 layers: W absorber + 4 MAPS each
- MIMOSA PHASE 2 chip (IPHC Strasbourg)
 - 30 µm pixels
 - 640 µs integration time (needs upgrade – too slow for experiment)
- 39 M pixels total

-0.5 0.0

1.0 x (cm)

• Test with beams at DESY, CERN PS, SPS

Event Display: *measurement (DESY) of pile-up of two 5.4 GeV electrons, demonstrates two-shower separation capabilities*

High Granularity (HG) Prototype, MAPS

Shower profile

Energy resolution

Linearity

Low Granularity (LG) Prototype, PAD (JP, US)

FoCal PAD proto type, 1 segment (ORNL, Tsukuba, CNS-Tokyo)

Test beam setup @ PS (same for SPS) in 2015

Linearity and energy resolution (2015 beam test, Tsukuba)

 Good linearity within ~3% from PS to SPS energies.

- Stochastic term: close to the expected value.
- Constant term: < 10%

2 staff members from Tsukuba (Motoi Inaba, TC) 4 undergrad students from Tsukuba 1 master student from Nara W. U. 4 from Utrecht (MAPS) <u>Total: 11</u>

2016 SPS test beam (Sep. 7-12)

- New summing board (by M. Inaba) installed for all 4 LGLs, tested with beams (<140 GeV/c).
- Wider dynamic range and
- Also the data matching between MAPS and PAD (LGL) is possible by the trigger bits recording in the both data stream

Electron signals at 130 GeV/c

<u>SPS; 130 GeV/c, e⁺</u>

time (1 time bin = 25 ns)

Y. Kawamura, T. Suzuki

Visited the ILC group @ Kyushu Univ. (2016.09)

R&D for fast readout: RD51 (VMM2/3)

- R&D and test for VMM2 and VMM3 hybrid boards with SRS + DATE (ALICE DAQ) system.
- R&D of combined design; on-board VMM2/3 on FoCal summing board, and modification for FoCal needs (dynamic range & trigger capability)

		D	ATEDAQ_TEST_D	AQ::DAQ_T	EST_CONTROL		
<u>File Viev</u>	/ <u>O</u> ptions	₩indows					Status update
	a 1		HI runn RC runn	DAQ - F DAQ - F ing on srsc ing on srsc	LTEST un Control agpc with PID 10233 agpc with PID 10042		
Disconn	cted < >2		Connected ()3	< D3	Ready to start		Data Takir
Configur	ation		Run Parameters		Start processes 4		Start 5
Define		Define	_ EDM		Stop		
Show			Show		HLT: mode A	v	Abort
					LDC: Local Recording O	FF v	1
					GDC: eventBuilding OFF	v	
RUN NUME	ER : 998	Run	Control Status	: STARTED			
Trace	Thu 14 17:4	15:09 (HI) Cu	arent RC options load	ed from : DATH	CONFIG		
Clear	Thu 14 17:4 Thu 14 17:4	15:09 (HI) St 15:05 (RC)	art processes time : 4 Detector LDCs: alone	seconds ldc			
Debug	Thu 14 17:4	15:05 (RC) R	an starting with				
Pause	Thu 14 17:4	15:05 (RC) St 15:05 (RC) G	arung run 998 et and update run numl	er from databa	se		
Bigger	Thu 14 17:4	15:05 (RC) N	ew Run options loaded	from : Databa	e DATE_CONFIG		
Smaller		E OF (DC) C.			NTPAN		

ALICE DATE for VMM (developed by RD51)

Ongoing activities

- Y. Kawamura (B4)
 - LGL performance (2015/2016 test beam)
- D. Kawana (B4)
 - LGL and HGL performance (2016 test beam)
- T. Sakamoto (Nara Woman Univ., M1)
 - LGL and HGL data matching (2016 test beam)
- T. Suzuki (B4), S. Takasu (Hiroshima U., B4)
 - GEANT 4 simulation for FoCal prototypes
- H. JEONG (B4)
 - Full simulation with FoCal
- M. Inaba (Tsukuba Tech, staff)
 - 8 x 8 (93 x 93 mm²) Si PAD test bench and readout, new prototype
- T. Nishimatsu (B4)
 - 3 x 3 (5 x 5 mm²) Si PAD test

Si PAD meeting in Osaka with Kyushu G. (Mar.)

Tentative schedule

Summary and Future Plan

- Rich physics and unexplored region @ forward rapidity at LHC
 - CGC, nature of CGC (size, structure, ...).
 - Connection to QGP thermalization mechanism and strong field (origin of QGP, initial condition).
 - Long range delta eta correlations (origin of ridge)
 - Extensive ongoing R&D efforts, well defined targets.

• <u>PLAN</u>:

- New prototypes for mass production and test beam @ ELPH (end of 2017)
- Install FoCal prototype in ALICE (BG measurement and hopefully initial physics measurement) by the prototype during the Run-2 (2018).
- Mini FoCal (3 <η<4) in Run-3 (2021-2023).
- Full FoCal (3.2 <η < 5.3) in Run-4 (2026-2029).