10 m 級テラヘルツ望遠鏡仕様

*	
□径	10m以上
光学系	リッチー・クレチアン
鏡面精度	20 μm以下
指向精度	0.5 ″
視野	1゜(世界最大)
観測周波数	200 GHz - 1.5 THz
観測装置	超伝導カメラ2万画素以上、ヘテロダイン受信機

建設の工程

	1 年目	2年目	3年目	4年目	5 年目	6 年目	7年目
望遠鏡	設計	製作	国内仮組	調整試験	試験評価	輸送	現地組立 調整試験
		4	V 188				7

南極 30 m テラヘルツ望遠鏡計画へ

南極は「地上最良の天文観測適地」であり、今後、天文観測の一大拠点に発展することが期待されます。10m級テラヘルツ望遠鏡で南極天文学を開拓したのち、南極30mテラヘルツ望遠鏡の開発も検討を開始しています。口径30mが実現できると、さらに飛躍的に性能が向上し、原始銀河探査など天文学に新たな地平を切り開きます。

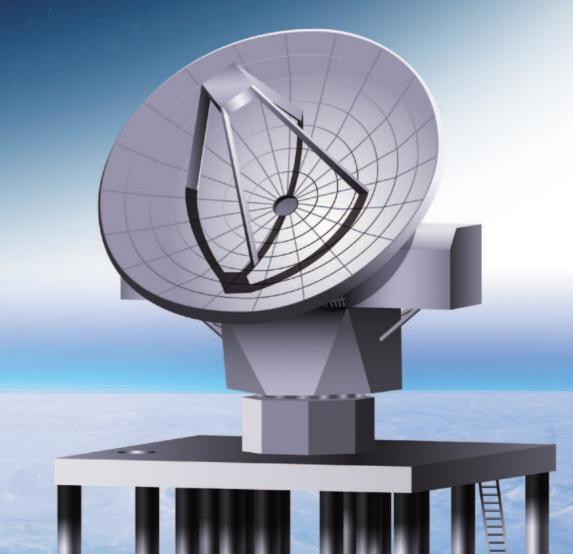
衛星との比較

参加機関

筑波大学、国立天文台、東北大学、関西学院大学、北海道大学、 埼玉大学、福島高専、JAXA、立教大学、金沢大学、 新潟工科大学、ほか南極天文コンソーシアム

筑波大学 数理物質系 数理物質融合科学センター 南極天文部門

〒 305-8571 茨城県つくば市天王台 1-1-1


http://www.px.tsukuba.ac.jp/home/astro/nakai/www0/

TEL: 029-853-4281 029-853-5080

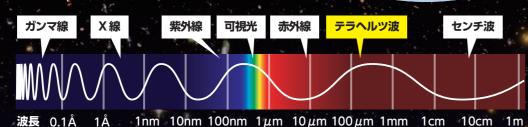
Terahertz Telescope Project

南極10m級 テラヘルツ望遠鏡計画

天文学の新たな地平を切り開く

地上最高の天文観測拠点

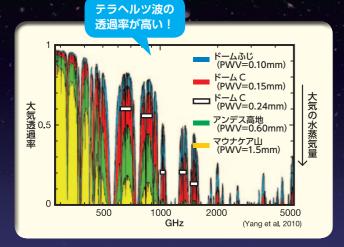
南極内陸部高原地帯は地上で唯一テラヘルツ波の 観測が可能であり、ミリ波サブミリ波でも地上で 最高の観測環境にあります。



ドーム C にあるコンコルディア基地に 10m 望遠鏡を建設する予定です。

テラヘルツ波とは

テラヘルツ波は、周波数 1 THz(波長 300 μm)前後の電磁波です。


この周波数帯では、星間空間に あるガスやダストからの放射が 地球に届いていますが、大気の 吸収が大きく、これまでほとん ど観測が行われていません。

ドームC

コンコルディア基地 (仏•伊) (3260m)

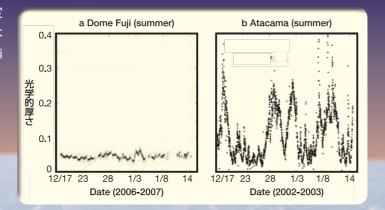
テラヘルツ波の観測も可能!

大気の透過率

宇宙から来たサブミリ波~テラヘルツ波~赤外線は、大気中の水 蒸気で吸収されるので、水蒸気が少ないほうが地上によく届き、

よく観測できます。南極では、 ハワイやチリの高地でも観測 が困難なテラヘルツ波の観測 が可能です。

> 南極の空気はとても乾燥しており、 大気がとても澄んで見えます。



大気の安定度

ドームふじで実際に 220 GHz での光学的厚さを実際に測定 してきました(夏期)。アンデス高地(5000 m)での安定な 年と比べても、はるかに安定であることがわかりました。(Ishii et al. 2010)

- ムふじで大気の光学 内厚さを測定中のラジオ

設置場所 ドーム C コンコルディア基地

緯度	南緯 75°	1-4	標高	3260 m
気温	-20 ℃ ~ -8	30 °C	晴天率	8割
周谏	10 m/s 以下	(平均~3	m/s)	

可降水量(衛星データ)

昭和基地

ドームふじ:日本 (3800 m)

> ドームA:中国 (4090 m)

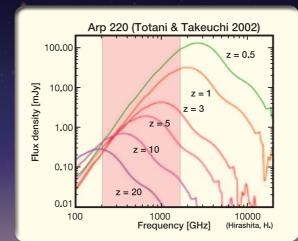
> > ドーム C:欧州

(3260 m)

リッジA:アメリカ (4050 m)

南極点:アメリカ (2835 m)

場所 冬期 2	5%水蒸気量 冬期	50%水蒸気量
ドーケC	0.15 mm	0.24 mm
南極点	0.23 mm	0.32 mm
チリ・アンデス 高地 5000m	0.35 mm	0.60 mm
ハワイ・ マウナケア山	1.0 mm	1.5 mm


南極テラヘルツ望遠鏡に よる「暗黒銀河」の解明

銀河の形成と進化の謎に挑む

近年、可視光では見えず、サブミリ波でしか見えない遠方銀河(サブミリ 波銀河)が多数発見されています。サブミリ波銀河は、初期宇宙で爆発的 星形成を起こしている銀河であり、星間ダストに覆われているために可視 光では見えない銀河と考えられています。

JCMT+SCUBA による 350 GHz で検出されたサブミリ波銀 河 (等強度線)。左側の天体は赤方偏移 z = 2.56。背景はハッ ブル宇宙望遠鏡による可視光で観測された z = 0.25 にある

超広視野望遠鏡によるテラヘルツ観測

サブミリ波銀河やさらに遠方の銀河は、宇宙の膨張による赤方偏移によっ て、サブミリ・テラヘルツでもっとも明るくなると考えられます。した がって、サブミリ・テラヘルツ波の観測によって、より遠方のまだ見つかっ ていない銀河(暗黒銀河)の検出が可能になると期待されます。本計画

では、視野 1°という超広視野望遠鏡を用いて広 い領域の掃天観測を行うことで、多数の暗黒銀河 を検出し、銀河の形成・進化の過程を明らかにし ていきます。

南極テラヘルツ望遠鏡によって得られると期待される成果は、 その他にも多岐にわたります。

近傍銀河/太陽/銀河系内大質量星形成領域/テラヘルツ分子分光観測 太陽系惑星大気の観測/地球大気の観測/活動銀河核/ブラックホール

