

Higher-Order Moments of Proton-Number Fluctuations in Au+Au Collisions at 1.23A GeV with GSI HADES

Melanie Szala

Outline

Motivation

HADES spectrometer

Higher order moments of proton number fluctuations

- Efficiency corrections
- Volume fluctuations
- Results

Conclusions

Motivation

- Cross-over at low µ_B and 1st-order phase transition at high µ_B
 → Critical point
- Event-by-event fluctuations of conserved quantities are expected to be a signature of discontinuity in the QCD phase diagram
 - Charge Q / **baryon number B** / strangeness S
- Experimental observable:
 - Cumulants of event-by-event net-particle multiplicity distributions
 - (Net-)proton (proxy for net-baryon)

Experimental Observables

Cumulants of event-by-event net-particle multiplicity distributions

- (Net-)proton (proxy for net-baryon)

0-10%, **10-20%**, **20-30%**, **30-40%**

Cumulant ratios to cancel volume effects:

→ Cumulant rations cancel only mean volume effects!

 $S \cdot \sigma = \frac{K_3}{\kappa} + \kappa \cdot \sigma^2 = \frac{K_4}{\kappa}$

HADES Spectrometer

High Acceptance DiElectron Spectrometer

Located at SIS18, GSI Large acceptance

- Full azimuthal and polar angle coverage of Θ = 18 – 85°
- Fast detector
 - Trigger rate up to 8kHz (large statistics)

Au + Au @1.23 AGeV, $\sqrt{s_{NN}}$ =2.41 GeV

- 15 fold segmented Au target
- 7.4 x 10⁹ events recorded
- Trigger on 47% most central collisions

Proton Analysis

Event selection

Track selection

- $y = y_{cm} \pm 0.2$
- p_t = 400-1600 MeV/c

If
$$N_{\overline{p}} = 0 \rightarrow Poisson distribution: S \cdot \sigma = \kappa \cdot \sigma^2 = 1$$

Efficiency correction

Efficiency = acc x det. eff x rec. eff

Investigations of efficiency correction in UrQMD simulations:

\rightarrow Correct the moments

Bzdak & Koch, PRC 86 (2012); Xiaofeng Luo, arXiv:1410.3914 (2014)

\rightarrow Unfolding

G. D'Agostino, Nucl. Instr. Meth. A 362 (1995) 487.

J. Albert et al. (MAGIC), Nucl. Instr. Meth. A 583 (2007) 494.

S. Schmitt, J. Instr. 7 (2012) T10003.

Correct the moments

Self-consistency check

- UrQMD protons \rightarrow reference
- UrQMD + Geant reconstructed protons \rightarrow efficiency correction

Bzdak & Koch, PRC 86 (2012); Xiaofeng Luo, arXiv:1410.3914 (2014)

Correct the moments

Efficiency correction

Efficiency correction

Efficiency: strong effect on centrality

Efficiency depends on number of tracks per event

Detector divided into 6 sectors

- Efficiency is sector dependent
- \rightarrow Efficiency correction
 - Event-by-event
 - Particle number in sector
 - y and p_t dependent

UrQMD

30-40 %

30-40 %

30-40 %

Correct moments - event-by-event -

UrQMD

Correct moments - event-by-event -

Unfolding

measured distribution

true distribution

Unfolding procedure

Unfortunately, A is often quasi-singular and can not be inverted (ill-conditioned problem!)

ROOT package by S. Schmitt → TUnfold, TUnfoldSys, TUnfoldDensity

Minimize in a least-squares procedure the "Lagrangian":

$$\begin{split} \mathcal{L}(x,\lambda) = & \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3 \\ & \mathcal{L}_1 = & (\boldsymbol{y} - \mathbf{A}\boldsymbol{x})^\mathsf{T} \mathbf{V_{yy}}^{-1} (\boldsymbol{y} - \mathbf{A}\boldsymbol{x}), \\ & \mathcal{L}_2 = & \tau^2 (\boldsymbol{x} - f_b \boldsymbol{x_0})^\mathsf{T} (\mathbf{L}^\mathsf{T} \mathbf{L}) (\boldsymbol{x} - f_b \boldsymbol{x_0}), \\ & \mathcal{L}_3 = & \lambda (Y - \boldsymbol{e}^\mathsf{T} \boldsymbol{x}) \end{split}$$

$$L_1: \text{ least square minimization} \\ & L_2: \text{ describes regularisation} \\ & L_3: \text{ area constraint} \end{split}$$

Response function

Regularization

τ is a free parameter controlling the strength of regularization

parameter is typically difficult to choose using only a priori information

• But its value usually has a major impact on the unfolded spectrum

several methods to find $\ensuremath{\tau}$

in TUnfold implemented methods

- L-curve scan
- Minimising global correlation coefficients

Methods to find best regularization

<u>L-curve Scan</u>

Minimising global correlation coefficients

→ T ≈ 10⁻⁴ - 10⁻⁵

Unfolded distributions

Comparing methods – Correct moments vs. Unfolding -

RealData

Results (eff. Corr.)

Poissonizer

 $\Delta y_{total} \gg \Delta y_{accept} \gg \Delta y_{corr}$

Experimental Observables

Cumulants of event-by-event net-particle multiplicity distributions

- (Net-)proton (proxy for net-baryon)

Mean	M	=	K_1
Variance	σ^2	=	K_2
Skewness	S	=	K_3/σ^3
Kurtosis	κ	=	K_4/σ^4

Cumulant ratios to cancel volume effects

$$S \cdot \sigma = \frac{K_3}{K_2}$$
 $\kappa \cdot \sigma^2 = \frac{K_4}{K_2}$

→ Cumulant ratios cancel only mean volume effects!

Negative Skew

(large tail to the left)

Positive Skew

(large tail to the right)

positive and negative

kurtosis

Volume Fluctuations

V. Skokov, B. Friman, and K. Redlich, Physical Review C 88, 034911 (2013)

\rightarrow The effect of volume fluctuations on cumulants of the net baryon number

$$c_{1} = \kappa_{1},$$

$$c_{2} = \kappa_{2} + \kappa_{1}^{2} v_{2},$$

$$c_{3} = \kappa_{3} + 3\kappa_{2}\kappa_{1}v_{2} + \kappa_{1}^{3}v_{3},$$

$$c_{4} = \kappa_{4} + (4\kappa_{3}\kappa_{1} + 3\kappa_{2}^{2})v_{2} + 6\kappa_{2}\kappa_{1}^{2}v_{3} + \kappa_{1}^{4}v_{4},$$

 k_n baryon number cumulants c_n volume affected cumulants v_n volume fluctuations cumulants

- \rightarrow Npart ~ volume
- → Modeled (Glauber and iQMD) N_{part} distribution to calculate the volume fluctuation cumulants

N_{part} from IQMD

- For each IQMD event b is translated into N_{part} using Gosset et al. PRC 16
- FW sum of charge has worse resolution

Results with volume corrections (IQMD FW)

Poisson limit

Poisson limit: $S \cdot \sigma \rightarrow 1$ and $\kappa \cdot \sigma^2 \rightarrow 1$ for $\Delta y \rightarrow 0$

Efficiency corrected protons with volume corrections:

! Strong dependence on Δy for most central collisions!

p_t and y dependance of $\kappa\sigma^2 = K_4/K_2$

Bzdak, Koch arXiv:1707.02640

Cumulants & multi-particle correlators

Bzdak, Koch & Strodthoff, PRC 95, 054906 (2017) based on STAR data (X. Luo et al., CPOD2014)

- Cumulants mix correlations of different order, e.g. K₄ contains of two-, three- and fourparticle correlations
- Measuring couplings of the multi-particle correlation functions could provide cleaner information on possible non-trivial dynamics in heavy-ion collisions
 → extract true correlation functions from the measured cumulants

$$\begin{split} K_2 &= \langle N \rangle + C_2, & C_2 &= - \langle N \rangle + K_2, \\ K_3 &= \langle N \rangle + 3C_2 + C_3, & C_3 &= 2 \langle N \rangle - 3K_2 + K_3, \\ K_4 &= \langle N \rangle + 7C_2 + 6C_3 + C_4, & \text{and} & C_4 &= -6 \langle N \rangle + 11K_2 - 6K_3 + K_4. \end{split}$$

Reduced correlation functions

$$C_k = \left\langle N \right\rangle^k c_k,$$

N_{part} dependance of proton correlations

- C_k vs. N_{part} as a better approach to isolate critical fluctuations:
- Factors to reflect their relative contribution to the fourth order cumulant

$$\kappa_4 = \langle N \rangle + 7C_2 + 6C_3 + C_4$$

 κ_k : cumulants C_k : multi-particle correlators

Proton correlations C_n/N_p vs. Beam Energy

- At energies larger that 19.6 GeV anti-protons become non-negligible, and thus the physical interpretation is less clear.
- K4/K2 is dominated by C₄ at low energies and by C₂ at 19.6 GeV.
- → should not forget that there are sources of correlations other that critical dynamics. need to be removed and understood

What we did...

- 1) Systematic checks in simulations (UrQMD + Geant)
 - Centrality selection
 - Efficiency correction
 - (Pt-y dependend eff correction)
 - Pt-y and track multiplicity dependend eff correction
 - Unfolding
- 2) Au+Au data
 - Centrality with EvtCharaClass: FWSumCharge
 - Two different eff correction methods
 - \rightarrow Higher order moments of proton distribution
 - \rightarrow Higher order moments of proton and deuteron distributions
- 3) Volume fluctuations
 - Glauber model
 - IQMD

What to do...

- 1) Systematic checks in simulations (IQMD + Geant)
 - Centrality selection
 - FW
 - Resolution vs autocorrelation (Hits/Tracks/FW)
 - Include fragments (efficiency, ...)
- 2) Possible contamination of moments
 - Resolution centrality estimation
 - Au+C reactions
 - Pile up effects
 - ..

Conclusions

Study of centrality selection and efficiency correction in simulation

Introduction of two different eff. correction methods

• Within error bars, both methods deliver compatible results

First look to volume fluctuation correction

• Volume correction influences higher order moments

Choice of phase-space bin ? (p_t, y)

Fluctuations on baryon number

• Bound protons?!

Possible contamination of moments

The HADES Collaboration

Backup

Comparison with STAR - (Net-) Proton

STAR analysis: Xiaofeng Luo et al., PoS (CPOD2014) 019 arXiv:1503.02558v2

STAR: 5 $p_t = 400 - 2000 \text{ MeV/c}$ (Net-)protons (Net-)protons HADES HADES 2 HADES 0-10 % $y = y_0 + 0.5$ HADES 0-10 % preliminary preliminary **NOT Volume Corrected** HADES 30-40 % HADES 30-40 % 4 STAR 0-5 % STAR 0-5 % 3 STAR 30-40 % STAR 30-40 % Sk · a σ^2 2 ¥ 0 0 3 4 5 6 2 3 4 5 6 20 30 2 10 100_200 10 20 30 100 200 √s_{NN} ∦s_{nn}

red/black = unfolding (preferred method) + vol. flucs. corr.

green = evt-by-evt eff correction of factorial moments + vol. flucs. corr.

37

Theoretical Expectation

Misha Stephanov, CPOD 2014

Correct the moments

$$F_{i,k}(N_p, N_{\bar{p}}) = \left\langle \frac{N_p!}{(N_p - i)!} \frac{N_{\bar{p}}!}{(N_{\bar{p}} - k)!} \right\rangle = \sum_{N_p=i}^{\infty} \sum_{N_p=k}^{\infty} P(N_p, N_{\bar{p}}) \frac{N_p!}{(N_p - i)!} \frac{N_{\bar{p}}!}{(N_{\bar{p}} - k)!} \qquad F_{i,k}(N_p, N_{\bar{p}}) = \frac{f_{i,k}(n_p, n_{\bar{p}})}{(\varepsilon_p)^i (\varepsilon_{\bar{p}})^k} \\ f_{i,k}(n_p, n_{\bar{p}}) = \left\langle \frac{n_p!}{(n_p - i)!} \frac{n_{\bar{p}}!}{(n_{\bar{p}} - k)!} \right\rangle = \sum_{n_p=i}^{\infty} \sum_{n_p=k}^{\infty} p(n_p, n_{\bar{p}}) \frac{n_p!}{(n_p - i)!} \frac{n_{\bar{p}}!}{(n_{\bar{p}} - k)!} \qquad F_{i,k}(N_p, N_{\bar{p}}) = \frac{f_{i,k}(n_p, n_{\bar{p}})}{(\varepsilon_p)^i (\varepsilon_{\bar{p}})^k}$$

$$A_{i,k}(x_{1},...,x_{i};\bar{x}_{1},...,\bar{x}_{k}) = \langle N(x_{1})[N(x_{2}) - \delta_{x_{1},x_{2}}] \dots [N(x_{i}) - \delta_{x_{1},x_{i}} - ... - \delta_{x_{i-1},x_{i}}] \\ \bar{N}(\bar{x}_{1})[\bar{N}(\bar{x}_{2}) - \delta_{\bar{x}_{1},\bar{x}_{2}}] \dots [\bar{N}(\bar{x}_{k}) - \delta_{\bar{x}_{1},\bar{x}_{k}} - ... - \delta_{\bar{x}_{k-1},\bar{x}_{k}}] \rangle$$

$$a_{i,k}(x_{1},...,x_{i};\bar{x}_{1},...,\bar{x}_{k}) = \langle n(x_{1})[n(x_{2}) - \delta_{x_{1},x_{2}}] \dots [n(x_{i}) - \delta_{x_{1},x_{i}} - ... - \delta_{\bar{x}_{i-1},x_{i}}] \\ \bar{n}(\bar{x}_{1})[\bar{n}(\bar{x}_{2}) - \delta_{\bar{x}_{1},\bar{x}_{2}}] \dots [\bar{n}(\bar{x}_{k}) - \delta_{\bar{x}_{1},\bar{x}_{k}} - ... - \delta_{\bar{x}_{k-1},\bar{x}_{k}}] \rangle.$$

$$(3) \quad F_{i,k} = \sum_{x_1,\dots,x_i} \sum_{\bar{x}_1,\dots,\bar{x}_k} A_{i,k} (x_1,\dots,x_i;\bar{x}_1,\dots,\bar{x}_k) \\ f_{i,k} = \sum_{x_1,\dots,x_i} \sum_{\bar{x}_1,\dots,\bar{x}_k} a_{i,k} (x_1,\dots,x_i;\bar{x}_1,\dots,\bar{x}_k) \qquad F_{i,k} = \sum_{x_1,\dots,x_i} \sum_{\bar{x}_1,\dots,\bar{x}_k} \frac{a_{i,k} (x_1,\dots,x_i;\bar{x}_1,\dots,\bar{x}_k)}{\epsilon(x_1)\dots\epsilon(x_i)\bar{\epsilon}(\bar{x}_1)\dots\bar{\epsilon}(\bar{x}_k)}$$

Bzdak & Koch, PRC 86 (2012); Xiaofeng Luo, arXiv:1410.3914 (2014)

Volume Corrections

Centrality determination

- Number of tracks in MDCs
- Number of hits in time-of-flight detectors (TOF+RPC)
- Sum of charge in Forward Wall (spectators)

Forward Wall

- Plastic Scintilator
- Θ = 0.5 7.5°
- 3 different sizes

Volume Correction: Glauber vs IQMD

Poisson Limit: $\Delta y \rightarrow 0$

Proton n-particle correlations: C_n vs N_{part}

 \rightarrow Going from cumulants κ_n to correlations C_n :

 \rightarrow C₄ is clearly the dominant contribution to the fourth order cumulant

Proton correlations C_n/N_p vs. N_{part}

