Recent Results from RHIC BES-I

- QCD medium properties at finite baryon density

Nu Xu^(1,2)

Many thanks to the Organizers!

⁽¹⁾ College of Physical Science & Technology, Central China Normal University, China ⁽²⁾ Nuclear Science Division, Lawrence Berkeley National Laboratory, USA

The QCD Phase Diagram and the Beam Energy Scan

(1) Introduction

(2) Recent Results from BES-I at RHIC

- i. Collectivity
- ii. Chirality
- iii. Criticality

(3) BES-II and Beyond

recerci

STAR Detector System

Data Sets for BES-I Program

√S _{NN} (GeV)	Events (10 ⁶)	Year	
200	350	2010	$\widehat{}$
62.4	67	2010	ieV/o
54.4	1000	2017	0) U
39	39	2010	entu
27	70	2011	ome
19.6	36	2011	se M
14.5	20	2014	sver
11.5	12	2010	Tran
7.7	4	2010	

Particle Rapidity

- 1) Largest data sets versus collision energy
- 2) STAR: Large and homogeneous acceptance, excellent particle identification capabilities. Especially important for fluctuation analysis

STAR: arXiv:1701.07065, PRC96, 44904(2017)

$\sqrt{s_{NN}}$ = 27 GeV Au+Au Collisions

STAR: arXiv:1701.07065, PRC96, 44904(2017)

Bulk Properties at Freeze-outs

Chemical Freeze-out: (GCE)

- Weak temperature dependence
- Centrality dependence **µ**_B!
- LGT calculations indicate the Critical Region around $\mu_B \sim 300$ MeV?

Collective Velocity $<\beta_T>$ (c)

Kinetic Freeze-out:

Central collisions => lower value of
 T_{fo} and larger collectivity β_T

- Stronger collectivity at higher energy, even for peripheral collisions

- ALICE: B.Abelev et al., PRL109, 252301(12); PRC88, 044910(2013).
- STAR: J. Adams, et al., NPA757, 102(05); STAR: 1701.07065
- S. Mukherjee: Private communications. August, 2012

K/π Ratios and Baryon Density

- The K⁺/π ratio peaks at √s_{NN} ~ 8 GeV,
 K⁻/π ratio merges with K⁺/π at higher collision energy
- 2) Model: Baryon density peaks at $\sqrt{s_{NN}} \sim 8$ GeV
- 3) At $\sqrt{s_{NN}}$ > 8 GeV, pair production becomes important

STAR: 1701.07065; J. Randrup and J. Cleymans, Phys. Rev. C74, 047901(2006)

PHSD Results (A. Palmese et al. PRC94, 044912 (2016))

- 1) In hadronic phase, 'Chiral symmetry restoration' & strangeness exchanges lead to enhancement of the anti-s quarks hadrons around $\sqrt{s_{NN}} \sim 8$ GeV
- 2) All negatively charged anti-s-quark enhanced, but not the s-quark, why?
- φ-meson production should be enhanced at the very same collision energy!

	hadron	quarks	Mass (MeV)
1	K+	U ⁺ S⁻	493.7
2	K-	u⁻s⁺	493.7
3	٨	u⁺d⁺s⁻	1115.7
4	Σ0	u⁺d⁺s⁻	1192.6
5	Ξ	d⁺s⁻s⁻	1.321.3

The emergent properties of QCD matter

Collectivity

$$\partial_{\mu} [(\varepsilon + p)u^{\mu} u^{\nu} - pg^{\mu\nu}] = 0$$

$$\partial_{\mu} [s u^{\mu}] = 0$$

Nu Xu

"QGP/CEP Research with Fluctuations", Tsukuba University, Japan, December 11 - 12, 2017

v₁ versus Collision Energy

v₁ vs. Energy: Softest Point?

 Minimum at √s_{NN} = 10 GeV for net-proton and net-Λ, but net-Kaon data continue decreasing as energy decreases

 At low energy, or in the region where the net-baryon density is large, repulsive force is expected, v₁ slope is large and positive!

- 4) Need model to explain!
- M. Isse, A. Ohnishi et al, PR <u>C72</u>, 064908(05)
- Y. Nara, A. Ohnishi, H. Stoecker, PRC94, 034906(16), arXiv: **1601.07692**

STAR: PRL112, 162301(2014)
 □ ▲ STAR: 1708.07132

v₁ vs. Energy: Softest Point?

1) B_2 of d higher than that of anti-d. Isospin effect not enough 2) B_2 of both d and anti-d show minima around 20GeV

STAR Data: N. Yu et al, QM2015

Au+Au Collisions at RHIC

- 1) Blast-wave fit to (pion, Kaon and proton) and light-nuclei (d) transverse momentum spectra separately. Profile parameter n=1 used in all fits.
- 2) In the most central (0-10%) Au+Au collisions, light-nuclei kinetic freeze-out at a higher temperature and smaller collectivity parameters, compared to that of light hadrons.
- 3) When are light-nuclei produced in high-energy nuclear collisions?

The emergent properties of QCD matter

Criticality

Status on Predictions

0.171st order phase transition crossover 0.16 T (GeV)0.15CEP 0.140.13DSE 0.120 0.080.10.12 0.14 0.020.040.060.16 μ (GeV)

Lattice QCD:

....

- 1) Fodor and Katz, JHEP 0404,050 (04) (μ^{E}_{B}, T_{E}) = (360, 162) MeV (Re.)
- 2) Gavai and Gupta, NPA 904, 883c (13) (μ^{E}_{B}, T_{E}) = (279, 155) MeV (Taylor)
- 3) F. Karsch (μ^{E}_{B}/T_{E} >2, CPOD2016)

DSE:

- 1) Y. X. Liu, et al., PRD90, 076006(14) $(\mu^{E}_{B}, T^{E}) = (372, 129) \text{ MeV}$
- H.S. Zong et al., JHEP 07, 014(14) (μ^E_B, T_E)= (405, 127) MeV
- 3) C.S. Fischer et al., PRD90, 034022(14) $(\mu^{E}_{B}, T^{E}) = (504, 115) \text{ MeV}$

$\mu^{E}_{B} = 300 \sim 504 \text{ MeV}, T_{E} = 115 \sim 162 \text{ MeV}, \mu^{E}_{B}/T_{E} > 2.5$

Expectation from Model Calculations

 $\begin{array}{c|c}
 & \frac{\kappa_4}{\langle N \rangle} \\
 & & baseline \\
 & & \sqrt{s} \\
 & 20 & 200 \\
\end{array}$

Characteristic "Oscillating pattern" is expected for the QCD critical point but *the exact shape depends* on the location of freeze-out with respect to the location of CP
Critical Region (CR)

M. Stephanov, *PRL107*, 052301(2011)
V. Skokov, Quark Matter 2012
J.W. Chen, J. Deng, H. Kohyyama, arXiv: 1603.05198, Phys. Rev. <u>D93</u> (2016) 034037

 $\kappa\sigma^{2}$

κσ²

Expectation from Model Calculations!

V. Vochenko, L.J. Jiang, M.I. Gorenstein and H. Stoecker 1711.07260 scenario I: QCD critical point dominates QvdW-HRG, net baryons (q = 1) - QvdW-HRG, net protons in acc. (q = 0.2) ----- Skellam (IHRG) 3 baseline net proton, 0-5% Au+Au, |y| < 0.5 $\sqrt{s_{NN}}$ $0.4 < p_{\tau} < 0.8$ GeV/c, STAR publ. 2 $k\sigma^2$ $0.4 < p_{\tau} < 2.0$ GeV/c, STAR prelim. 0 scenario II: nuclear matter critical point dominates 0 (b)

-1

10¹

s^{1/2}_{NN} [GeV]

10²

baseline

 $\sqrt{s_{NN}}$

Higher Moments and Criticality

- Higher moments of conserved quantum numbers:
 Q, S, B, in high-energy nuclear collisions
- 2) Sensitive to critical point (ξ correlation length):

$$\left\langle \left(\delta N \right)^2 \right\rangle \approx \xi^2, \ \left\langle \left(\delta N \right)^3 \right\rangle \approx \xi^{4.5}, \ \left\langle \left(\delta N \right)^4 \right\rangle \approx \xi^7$$

3) Direct comparison with calculations at any order:

$$S\sigma \approx \frac{\chi_B^3}{\chi_B^2}, \qquad \kappa\sigma^2 \approx \frac{\chi_B^4}{\chi_B^2}$$

 Extract susceptibilities and freeze-out temperature. An independent/important test of thermal equilibrium in heavy ion collisions.

References:

- STAR: *PRL*105, 22303(10); *ibid*, 112, 032302(14)
- S. Ejiri, F. Karsch, K. Redlich, *PLB633*, 275(06) // M. Stephanov: *PRL*102, 032301(09) // R.V. Gavai and S. Gupta, *PLB696*, 459(11) // F. Karsch et al, *PLB695*, 136(11),
- A. Bazavov et al., PRL109, 192302(12) // S. Borsanyi et al., PRL111, 062005(13) // V. Skokov et al., PRC88, 034901(13)
- PBM, À. Rustamov, J. Stachel, arXiv:1612.00702

- 1) The results of net-Q and net-Kaon show flat energy dependence.
- 2) Net-p shows non-monotonic energy dependence in the most central Au+Au collisions starting at $\sqrt{s_{NN}} < 27$ GeV!

Unfolded distributions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

 $\sqrt{s_{NN}}$ = 200 GeV, net-proton, lyl < 0.5, 0.4 < p_T < 2.0 (GeV/c), without CBWC nor VFC, binomial model, one RM unfolding with 30+100 iterations

T. Nonaka and S. Esumi et al.

T. Nonaka, Discussion with Nu and Xiaofeng, Jul. 30 17

Unfolding: $\sqrt{s_{NN}} = 200$ GeV Au+Au Collisions

- 1)Unfolding method established
- 2)Embedding used to generate the response matrix
- 3)Final results will follow soon

From T. Nonaka and S. Esumi

Net-proton Higher Moment

- 1) Flat energy dependence for 70-80% peripheral collisions
- Non-monotonic behavior in the most central 0-5%, and 5-10% collisions. Net-p follow protons, especially at lower collision energies

STAR Data: X.F. Luo, CPOD2014, QM2015

No Model Reproduces the 'Attraction'!

At $\sqrt{s_{NN}} \le 10$ GeV: Data: $\kappa\sigma^2 > 1!$ Model: $\kappa\sigma^2 < 1!$ All models: suppress higher order net-proton fluctuations (UrQMD, AMPT, HRG and JAM do not reproduce data)

- 1) Z. Feckova, J. Steonheimer, B. Tomasik, M. Bleicher, 1510.05519, PR<u>C92</u>, 064908(15)
- 2) X.F. Luo et al, NP A931, 808(14); P.K. Netrakanti et al., NP A947, 248(16); P. Garg et al. Phys. Lett. B726, 691(13)
- 3) Baryon mean-field (attractive): Shu He et al., Phys. Lett. B762, 296(2016).
- 4) Proton clusters: A. Bzdak, V. Koch, V. Sokokov, Eur. Phys. J., C77, 288(2017) Interesting but unfinished, needs include dynamic effects in HIC.

- 1) Enlarge rapidity acceptance
- 2) Improve particle identification
- 3) Enhance event plane resolution

iTPC, EPD, eTOF Dedicated two runs at RHIC: 2019 & 2020

2019-2020: BES-II at RHIC

√S _{NN} (GeV)	Events (10 ⁶)	BES II / BES I	Weeks	μ _B (MeV)	T _{CH} (MeV)
200	350	2010		25	166
62.4	67	2010		73	165
54.4	1200	2017			
39	39	2010		112	164
27	70	2011		156	162
19.6	400 / 36	2019-20 / 2011	3	206	160
14.5	300 / 20	2019-20 / 2014	2.5	264	156
11.5	230 / 12	2019-20 / 2010	5	315	152
9.2	160 / 0.3	2019-20 / 2008	9.5	355	140
7.7	100 / 4	2019-20 / 2010	14	420	140

Precision measurements, map the QCD phase diagram $200 < \mu_B < 420 MeV$

CBM Phase-0 Exp: eTOF at STAR

Install, commission and use 10% of the CBM TOF modules, including the read-out chains at STAR, starting in 2019

CBM participating in RHIC Beam Energy BES-II in 2019-2020:

 Complementary to part of CBM's physics program: √s_{NN} = 3, 3.6, 3.9, 4,5, 7.7 GeV (750 ≥ μ_B ≥ 420 MeV) especially for *B*- & *s-hadrons* production and fluctuations

FAIR construction started, beam on target in 2025!

Search for the QCD Critical Point

- RHIC BES-II: dramatically reduce the errors!
- CBM/RHIC FXT/HADES Experiments (2.5 < √s_{NN} < 8 GeV) : Key region for Critical Point search

STAR Data: X.F. Luo et al, CPOD2014, QM2015; PRL112 (2014) 32302

- 1) At the mid-baryon density region, $\mu_B > 250 \text{ MeV}$ ($\sqrt{s_{NN}} < 20 \text{ GeV}$), interesting behaviors observed in Collectivity (Chirality) and Criticality!
- 2) High statistic data at high baryon regions needed: RHIC STAR BES-II, NICA, CBM, J-PARC(?).
- 3) At $\mu_B \sim 0$ MeV, the high-energy limit, more data needed for the experimental evidence of the 'smooth-crossover'.

Acknowledgements

X. Dong, S. Esumi, S. Gupta, XG. Huang, V. Koch, JF. Liao, F. Liu, F. Lu, XF. Luo, B. Mohanty, HG. Ritter, SS. Shi, M. Stephanov, ZG. Xiao, PF. Zhuang

Thanks for your attention!