Development of millimeter-wave band MKID camera for wide-field continuum observations

T. Nitta

University of Tsukuba

Contents

- * Scientific Motivation
- * Operation Principle of MKID
- ★ MKID Camera Development for Wide-filed Observation
- ★THz band Camera
- * Summary

Survey of Distant Galaxies

✤ Distant Galaxy Survey

- distant galaxy
 - optical wavelength observation is difficult because the emission is absorbed by dust
 - dust emission can be observed at mm-wave to THz range

* Star Formation History

- redshift can be determined from the SED of the galaxy
- to reveal the star formation history at high-redshift, dust emission observation is important

Wide-Field Observations

* Wide-field telescope and multi-pixel superconducting camera

.....

are important

Wide-Field Continuum Camera

* 100-GHz band Camera (now developing)

- Camera is installed to Nobeyama 45m telescope
- Detector : 109 pixel MKID array
- frequency band : 90 110 GHz
- Field-of-view : ~ 3 arcmin

* THz band Camera (Future Plan)

- Our group is planning to construct the 10 m telescope at the Antarctica plateau.
- frequency band : 0.4 / 0.85 / 1.3 THz
- Field-of-view : I degree

MKID detector is one of the important technology for realizing wide-field camera

Microwave Kinetic Inductance Detector (MKID)

* Operation Principle

- Superconducting resonators operated in the microwave range
- Incident photons break Cooper-pair
 - → Kinetic Inductance is changed
 - → Resonance frequency of MKID is also changed

Signals from the objects are observed by monitoring the shift of the resonance frequency.

* Advantage of MKID

- High-detector yield is expected because the MKID fabrication process is relatively simple
- Intrinsic frequency multiplexing capability \rightarrow ~1000 pixels can be measured with one LNA

MKID Camera for the Nobeyama 45m Telescope

* <u>Millimeter-wave MKID Camera</u>

- Millimeter-wave MKID camera has been developed for the Nobeyama 45m telescope
- Collaboration with National Astronomical Observatory of Japan
- Optics of the 45 m telescope consists of the four reflective mirrors
 - → Two Si lenses are used to connect the telescope focus to the MKID array.

* <u>Camera specifications</u>

Observation Frequency	100-GHz band(90 – 110 GHz)
Field-of-view	\sim 3 arcmin
Polarization	linear single polarization
Detector	Microwave Kinetic Inductance Detector
Cold Optics	Refractive optics using Si lens
No. of pixels	109 pixels
Bath temperature	< 200 mK

Antarctica Plateau

* Planning telescope at Antarctica

- 10 m class telescope @ Dome C (France-Italy site)
- 30 m class telescope @ New Dome F (Japanese site)

* Comparison to other sites

- <e.g. Atacama / Mauna Kea >
 - very good site for astronomy
 - There are a lot of telescope on these sites

< Antarctica >

- higher transmittance
- THz bands are only available at the Antarctica

Antarctica is the best site for millimeter-wave and terahertz astronomical observations

MKID Camera for Antarctica telescope

<u> * Antarctic 10 m Telescope</u>

- Field-of-View : I degree
 - Survey of distant galaxy
- Two instruments @ Nasmyth focus
 - Heterodyne receiver & Camera
 - Select by changing the third mirror

* THz band MKID Camera

- 7 optics tubes with Si lens
 - based on the NRO 45m MKID camera
 - ~20000 pixels for 0.45, 0.85, 1.3 THz
- Two types of focal plane arrays

 \rightarrow Si lens array and horn array

Summary

* Scientific Motivation

- distant galaxy survey
 - wide-field survey is important to detect the unknown galaxies
 - redshift can be determined from the spectrum energy distribution

* MKID camera development

- MKID camera for the Nobeyama 45 m telescope
 - 109 pixel array using lens-antenna coupled MKID
 - dark NEP : ~ 10⁻¹⁶ [W/rHz]
 - improvement of the sensitivity is needed
 - Beam pattern measured with planets is comparable with the simulation

* Future development

- Antarctica is the best site for THz astronomy
- $\cdot \sim$ 20000 pixel camera is designed for the Antarctic 10 m telescope