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Basic contributions to the foundation of
* relativistic quantum field theory

* renormalization theory

* theory of collective motions

=> Nobel prize in Physics 1965
together with Julian Schwinger
and Richard Feynman
(2nd Nobel laureate from Japan)

A founder of physics institutes at Tsukuba.

1941 Professor of the Tokyo Univ. of Literature and Science
works on relativistic QED and renormalization theory

1949 Professor of the Tokyo Univ. of Education

1956 President of the Tokyo Univ. of Education

reorganized to found

SIN-ITIRO TOMONAGA
1906-1979

1973 Univ. of Tsukuba

Standing exposition at the Tomonaga Memorial Room
in the University Gallery, Univ. of Tsukuba
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Antarctic Observatory of Astronomy

4p Present Universe is ionized. On the other hand, it was neutral
0.3 Bi. years ago as the CMB is observable. To understand the
formation of galaxies, stars, and life, it is important to clarify the
lonization mechanism.

# lonization must be caused by UV radiations from stars.

4 However, only 30% of required stars/galaxies are visible with

present telescopes. Remaining 70% -- "dark galaxies" -- should

Antarctic el

be found in the deep space. o L e \CRSPGtony of

W< Deep-space exploration by THz telescope at Antarctica
4 Step 1: 10m THz telescope

The Hubble expansion makes lights from the deep-space in the THz range, which are
usually dumped by the water vapor in the atmosphere.
=> Antarctica with its extremely low humidity is the only place on the Earth
where THz waves are observable.

Wide angle survey up to 12.6 Bi. years ago by 10m telescope. Recommendation by SCAR
(2010). Combining with the IR observation by the rocket/satellite experiment of the cosmic

neutrino background project, we clarify the whole spectrum to determine the character
and distance of dark galaxies.

Planned site: Concordia Station (3233m, built by France and Italy)

W/l» Step 2: 30m THz telescope

Survey up to 13.6-13.7 Bi. years ago. TN N =
=> Direct observation of first stars and galaxies. SENOBRBCRRA ||y

Based on the experience of 10m telescope. w
Planned site: New Dome Fuji (3800m, NiPR) - 6 -

galaxies in the
deep space

near galaxies
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Antarctic Plateau (>3000m, < -70°C in winter) e+ o IrEMblin'etal. (2012)

= Best place for astronomical observations o | | m Dome A rwossom

Black 10%

Red 25%

Blue 50"/#
A Green 751%

ALMA alt. 5100 m

ALMA site i

Dome F (3810m)
(Japan)

Transmission

Rldge A (4050m)
(USA)

Dome A (4090m)
E (China)
,' J Dome C (3230m)

(France & ltaly)

Transmission

South Pole (2835m)
(USA)

A Step O:

o development of wide-field
MKID camera (Microwave
Kinetic Inductance Detector)

MKID camera at NAOJ 40m

109 pixel MKID camera

*« 400GHz, 850GHz, 1.3TH 20,000 pixels
~ —Simultaneous observations FOV~1°

g> teSt Observation at Dome C Test at Parinacotta,Chile (4800m)
with 30cm radio telescope (Aug 2010,2011)

Equipped with a 0.5 THz SIS receiver.

Can be assembled by 4 persons by hand.
=> Galactic plan survey in CO(4-3) and [CI].
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Study of Unstable Nuclei

4 Origin of heavy elements in the Universe:

Super-nova explosions after the formation of first stars and galaxies
around |3 Bi. years ago, merger of neutron stats, etc.

Important to understand the reaction processes of unstable nuclei (r-
process, s-process).

¢ Study of unstable nuclei using heavy-ion accelerators

Measure masses and lifetimes of unstable nuclei by Rare RI-Ring at the Rl
Beam Factory (RIBF) of RIKEN, and obtain the reaction rates for the -

process. Rare RI-Ring @ RIKEN/RIBF
|st step: Study at N=50 (Ni-region) <= Ist runin Nov.2018 in operation since Mar. 2015

2nd step: N=82 (Sn-region) <= Ist runin Nov.2018
3rd step: N=126 P A o R p o
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Clarification of Quark and Nuclear Matters

4p 104 sec after Big Bang: phase transition from quark matter
(quark-gluon plasma: QGP) to ordinary matter of hadrons/
nucleons

It is the most recent particle-level phase transition of our Universe.
=> |nitial condition for the evolution of ordinary elements.

W< High-energy heavy-ion collision experiments /9GP and

the origin of
GET

Create QGP on the earth by mankind ("Little Bang").

: . -
=> Clarify the nature of the phase transition and the quark é 20l
nuclear matters (fluctuations, expansion, transition temperature, =
. . . . 1st order phase transition

viscosity, etc.) around the transition temperature. z beyond the criical end poit
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Exploration of Cosmic Neutrino Background

4 Few seconds after Big Bang = Cosmic Neutrino Background (CVB)
300,000 years after BB = Cosmic Microwave Background (CMB)
) Discovery of CVB means the first direct observation of the cosmic

era before CMB, => clarification of the initial condition for the
formation of galaxies and large-scale structures of the Universe.

4 A large amount of CVB of about 100/cm3 is expected.

This enables us a high precision observation of the neutrino decay,
and thus provides us with the only way to directly measure the
absolute value of neutrino masses, which play an essential role in the
development of cosmic fluctuations together with the effects of dark
matter and dark energy.

‘1;{ COBAND PI"OjGCt: exploration of CVB by rocket and satellite experiments

Precision measurements of far IR photons from neutrino decays.

4 Step 1: Rocket experiment : take data for 5 min. at 200 km high.

Determine the life of the neutrino if it is shorter than 104 years.
(cf. current lower bound = 3%10!2 years.)

4 Step 2: Satellite experiment W
el

Determine the life of the neutrino if it is shorter than 10!7 years.

M%» Development of SOI-ST] detectors. —_— /Z, ot o
| Vo & 2V,
Operation at extreme low temperatures confirmed. 34 .

(Nagata et al., 2009). COBA ND
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Cosmic IR spectrum

Far IR photons from neutrino decays /2//
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— neutrino decay signal
with a sharp cut-off

Detectors based on superconducting tunneling junction (ST))
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=> Need high resolution and high sensitivity.
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Study of Higgs Particle and Search for New Particles

4 10-10 sec after Big Bang: Higgs phase transition, particles get masses. Higgs
\. particle

4 Clarification of the nature of the Higgs particle(s): the number of Higgs
particles, decay to dark matter particles, self-coupling

=> Origin of mass, direct search for the dark matter

towards physics beyond the standard model, critical test of the principles
of particle physics (gauge symmetry, renormalizability).

4 Exploration of super-symmetric particles, extra dimensions, etc.

=> Origin of force, origin of space-time

Y ATLAS experiment at CERN/LHC

Development of high-resolution detectors by the silicon micro strip sensor.

ﬁ Detector characteristics
Muon Detectors Electromagnetic Calorimeters - Width:  44m
3 f 4 | Diameter: 22m
% f] | Weight: 7000t
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Detailed studies of the Higgs particle :

®Higgs discovery in 2012

Nobel prize in 2013 (theorists)
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To cope with the hostile environment
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Higgs : a different kind of particle

B Neither matter particle, nor a force carrier
B Gives mass to other particles
B New meaning to vacuum

Do the properties agree with theory?
e.g. the couplings to each particle

opqu:m. » Hg
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Tau

’ Strange quark

Muon

Down quark
*Up quark
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mid 2020s =» New particles/phenomena/laws beyond the standard theory?

Existing ATLAS inner tracking detector
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Division for Development of Photon and Particle Detectors

W< Advanced detectors enabling new physics measurements

Advanced detectors based on new technologies promote and enable measurements in various physics area
beyond the current limitations. The Division supports R&D of new detectors for the projects of TCHoU and
develops innovative detectors in the framework of TIA activities.

microstrip |

4) Development of PPDs in close
linkage with other TCHoU —
divisions

D W e -
NI

Developments of silicon semiconductor
devices for ATLAS and ALICE detector
upgrades, STJs for COBAND project,
and detectors for other TCHoU projects
are pushed forward by the Division with
exchanging knowledge and expertise.

LGAD

pixel sensor -

m FoCal Si/W

HL-LHC ATLAS LHC ALICE

4) Innovative detectors in TIA

TIA (Tsukuba Innovation Arena) brings together the

potentials and resources of five organizations in the
Tsukuba area. The Sensor & Imaging Square of TIA is

' ¢ i| World-best spatial
: resolution 0.65mm

Spatial resolution [um)
D O 0 O @ a - o
N m o ke n

:,g%““ " achieved in 2017 organized for developments of advanced detectors to
[ — create new scientific fields and industries.
10 10°
SIN 4
o e e Innovative monolithic pixel detectors are being
| B, o= __T : I“:_ Y Rad-hard realized by the SOI technology. Design and fabrication
VLSI design E B 5= v i detector R&D  Of VLSI are made in collaboration with KEK and VDEC

L=F: ARA o ﬂh -
=k i l l l & . (U Tokyo). 3D stacking using u-bumps enables

5 50' e
" 3D stacking enhances further enhancement of the sensor capability.

High R-Si

— the sensor capability, The projects for STJs and imaging of massive objects

SOI monolithic deteci:ag?m' e.g for ILC experiment (muon-radiography) are also included in the Square.
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Mission:

- construction of an integrated view on the History of the Universe

> by clarifying key processes in the dynamical evolutions of the Universe

» thru interdisciplinary and international cooperations of particle-, nuclear-
and astro-physics






