Development of 109-pixel NbTiN/AI Hybrid MKID for 100-GHz band continuum observations

University of Tsukuba / NAOJ

Yosuke Murayama

on behalf of the MKID Camera Team

3th June, 2019

- 1. Background, Scientific motivation
- 2. 100-GHz band MKID camera
- 3. Commissioning with the Nobeyama 45-m telescope
- 4. Development NbTiN/AI Hybrid MKID

^{1 Background} **1.1 Survey of Distant Galaxies**

SED model of dusty galaxy: Dust temperature 42K, "Arp220-like" infrared galaxy (*Color:* difference of the redshift z)

Motivation

- To understand the star-formation history

and the evolution of galaxies

Dust emission from distant galaxies

- Dust (particle size <1um) in distant galaxies radiates
 luminous in the infrared band.
- We could <u>observe the emission in mm/submm/THz</u> <u>band</u> as the results of **redshift**.

Multiband observation (100 GHz + submm, IR)

 We can obtain <u>the photometric redshift (photo-z)</u>, <u>luminosity, temperature and star-formation rate (SFR)</u> of the distant galaxies.

1 Background

1.2 Survey with single dish telescope + radio camera

Single dish telescope + radio camera

- Wide Field-of-View (FoV) single dish telescope and radio camera (hundreds ~ thousand pixels) are important to make distant galaxies survey efficiently.

^{1 Background} **1.3 Follow-up high-resolution observation**

Follow-up observation by radio interferometer

- Radio interferometers, like ALMA, have <u>ultra-high angular resolution.</u>

Increase the number of high-z objects detection with single dish + camera (=> determine photo-z)

High-resolution molecular line observation by ALMA (=> More accurate determination of redshift z than photo-z)

Statistically understand distribution, distance, SFR of galaxies

1 Background

1.4 mm/sub-mm/THz wavelength Camera Projects

SED model of dusty galaxy: Dust temperature 42K, "Arp220-like" infrared galaxy (*Color:* difference of the redshift z)

100-GHz band Observation

- Nobeyama 45-m radio telescope
- 100-GHz band camera

400-GHz/850-Ghz/1.3-THz bands Observation

- Antarctic THz Telescope (10-m)
- 3-bands camera

2 MKID camera 2.1 100-GHz band MKID Camera

Nobeyama 45-m telescope + 100-GHz band MKID camera

 Field-of-View (FoV) 3 arcmin. antenna & radio camera help us survey 100-GHz band

Continuum observation frequency	100-GHz band (85-120 GHz)	
FoV	~ 3 arcmin.	
Polarization	Linear & Single polarization	
Detector	Microwave Kinetic Inductance Detector (MKID)	
Cold optics	Refractive optics using Si lenses	
Number of pixel	109 pixel	
Operation temperature	< 200 mK	

Specification of our camera

2 MKID camera 2.3 Microwave Kinetic Inductance Detector

Microwave Kinetic Inductance Detector (MKID) is one of the superconducting resonator (Day, et al.(2003))

Resonant frequency in microwave f_0 :

$$f_0 = \frac{1}{4l} \frac{1}{\sqrt{LC}} = \frac{1}{4l} \frac{1}{\sqrt{(L_m + L_k)C}}$$

l: Length of resonator, *C*: Capacitance, L_m : Magnetic inductance, L_k : Kinetic inductance (depends on the density of Cooper-pairs)

Incident photons ($h\nu > 2\Delta$; Higher than superconducting gap energy) break the Cooper-pairs in the MKID

- \Rightarrow Change in kinetic inductance L_k
- \Rightarrow Change in resonance frequency shift Δf

2 MKID camera 2.4 Status of 109-pixel MKIDs device in dark

Item Name	Device data
Superconducting film (thickness) / deposition	AI (~150 nm) / e-beam evaporator
3-inch wafer	Si wafer (>10 kΩ·cm)
Quality factor	6×10^4 (median of 82-MKIDs)
Quasiparticle lifetime [µs]	120 (averaged 5-MKIDs)
Amplitude NEP _{dark} @10Hz [W / Hz ^{1/2}]	3.2×10^{-16} (averaged 25-MKIDs)
Phase NEP _{dark} @10Hz [W / Hz ^{1/2}]	1.8×10^{-16} (averaged 25-MKIDs)

Sensitivity: Noise Equivalent Power *NEP* [W/Hz^{1/2}]

3. Commissioning 3.1 Camera Installation to the telescope

Carry in Nobeyama 45-m telescope

Inside the telescope (Receiver cabin)

On-sky observations: 18th May 2018 ~ 1st June 2018

- Scan type: raster-scan observation (2x2, 3x3, 4x4 arcmin²)
- Objects: the planets (Jupiter, Venus and Mars), galaxy, QSO
- => We obtained the beam pattern, sensitivity and efficiency measurements

Current Problems

- [Optics] Low transmittance: $\tau \sim 34\%$
 - The reflection loss is about 30% on the surface of silicon
 => Anti-reflection coating/structure is needed
- [Detector] Higher NEP_{dark}
 - *NEP*_{dark} (Goal): $10^{-17} \text{ W}/\sqrt{\text{Hz}}$
 - $NEP_{dark, Amp}$ @10Hz: $3.2 \times 10^{-16} W/\sqrt{Hz}$

- [Detector] Low optical efficiency: $\eta_{opt} \sim 3\%$
 - NEP_{opt} (Goal): < 10^{-16} W/ \sqrt{Hz} : limited by the atmosphere
 - NEP_{opt} @10Hz: ~ 10^{-15} W/ \sqrt{Hz}

-
$$NEP_{opt} = \sqrt{\frac{NEP_{det}^2}{NEP_{det}^2} + (NEP_{photon}^2 + NEP_{g-r}^2)/(\tau\eta_{opt})}$$

 $\sim NEP_{dark}^2$

4. Development of Hybrid MKID

4.1 NEP_{dark} Calculation

	Requirement	Measurement (device installed NRO45m)		
Dark NEP [W Hz ^{-1/2}]	$\sim 10^{-17}$	3.2×10^{-16} (Averaged 25 kids)@10 Hz		
Optical NEP [W Hz ^{-1/2}]	$\leq 10^{-16}$	$\sim 10^{-15}$		
$NEP_{dark,A}^{2} = S_{A}(\boldsymbol{\omega}) \left[\frac{\eta \tau_{qp}}{\Delta} \frac{\delta A}{\delta N_{qp}} \right]^{-2} (1 + \omega^{2} \tau_{qp}^{2}) (1 + \omega^{2} \tau_{r}^{2}) $ Baselmans+20				
$\left(\begin{array}{c} \eta: \text{ efficiency of quasiparticle creation} \sim 0.57, \Delta: \text{ superconducting gap energy,} \\ \omega: \text{ noise frequency, } \tau_r: \text{ resonator ring time} \end{array} \right)$				

Important Parameters

- S_A [1/Hz]: Noise spectrum density in Amplitude readout
- $\frac{\delta A}{\delta N_{qp}} \propto \frac{Q}{V}$: **Responsivity** of MKID in Amplitude readout (Q: Q-factor, V: Volume of the resonator)
- τ_{qp} [sec.]: Lifetime of quasiparticles

4. Development of Hybrid MKID 4.2 Improvement of Responsivity

shift [Hz]

Resonance frequency

- Reduce resonator volume V

MKID Device	Al thickness [nm]	Responsivity $\delta f/\delta N_{qp}$ [Hz]
Commissioning device	150	~ 0.011
Test thinner AI device	50	~ 0.080

Nqp []: Number of quasiparticle

4. Development of Hybrid MKID 4.3 NbTiN/AI Hybrid MKID

Quasi-particles are created around the antenna because the both CPW central line and GND plane are made of Al.

But by using NbTiN/Al hybrid MKID, the radiation (90 GHz < f < 120 GHz) will be absorbed *only* in the Al central line.

- NbTiN (for GND plane) gap energy: ~1.1 THz
- AI (for resonators' CPW center line): ~90 GHz

R. M. J. Janssen+2013

NbTiN/AI hybrid can

improve optical efficiency η_{opt} .

4. Development of Hybrid MKID 4.4 Development NbTiN/AI MKID

[Step 1] Test hybrid MKID device (chip size 20cm x 12cm)

* Check fabrication parameters and the NbTiN/Al contact region [Step 2] **109-pixel hybrid MKID device (3-inch wafer)**

*For Nobeyama 45-m radio telescope camera

109-pixel hybrid device

4. Development of Hybrid MKID 4.5 Fabrication Flow

Our MKID have been developing in the Advanced Technology Center, National Astronomical Observatory in Japan, Mitaka.

- Wafer: 3-inch Si, 10 kΩcm, FZ, non-doped
- Al film: AJA
- NbTiN film: CS-200ET (Tc~13K, *ρ*~160 μΩcm)
- Exposure: Aligner
- Etching: Wet etch for Al ICP-RIE for NbTiN

4. Development of Hybrid MKID 4.7 SEM image: NbTiN/AI contact region

- Taper: Good
- Al short-end seems to connect NbTiN GND plane.

Summary

Summary

- To understand the evolution process of the galaxies, we have been developing 100-GHz band camera for the NRO45m telescope.
- In the commissioning during 2018.05 2018.06, we observed the planets, galaxy, QSO.

Future development

- Measurement optical efficiency of Hybrid MKID
- Improvement of the pattering process to increase detector yield of Hybrid MKIDs

Acknowledgement

We would like to thank the Nobeyama Radio Observatory staff for their support.